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Abstract� Building extraction based on high-resolution remote
sensing imagery has been widely used in automatic surveying and
mapping. However, few methods have been developed for building
instance extraction, i.e., extracting each building�s footprint
separately, which is required in a number of applications, such
as the smallest unit of a cadastral database. In building instance
extraction, there are two challenges: 1) buildings with various
scales exist in the imagery and 2) precise building footprints are
dif�cult to extract due to the blurry boundaries. In this article,
to solve these problems, a multiscale U-shaped convolutional
neural network building instance extraction framework with edge
constraint (EMU-CNN) for high-spatial-resolution remote sensing
imagery is proposed. The proposed framework consists of three
components: 1) a multiscale fusion U-shaped network (MFUN);
2) a region proposal network (RPN); and 3) an edge-constrained
multitask network (ECMN). First, in the proposed method,
the MFUN includes three parallel branches to learn multiple
building features with different scales. The RPN then detects
the positions of the building instances, even for buildings that
are connected with each other. Moreover, according to the
instance positions, the ECMN is proposed to extract a precise
mask and suppress over�tting. The experiments conducted on
a self-annotated data set and two public data sets (the ISPRS
Vaihingen semantic labeling contest data set and the WHU aerial
image data set) show that the EMU-CNN method can achieve
excellent performance and shows great robustness at different
scales.

Index Terms� Deep learning, edge constraint loss (ECL),
high-resolution imagery, instance segmentation, multiscale build-
ing extraction.
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I. INTRODUCTION

BUILDING extraction based on high-resolution remote
sensing imagery is important for urban management

planning, land-cover change detection, and cadastration. The
process of the building extraction is aimed at extracting a
building footprint using pixel- or object-based algorithms [1].
Among the building extraction methods, the mainstream
methods are the traditional handcrafted feature-based meth-
ods [2]–[5], including the edge detection methods, the Hough
transform-based methods, and the object-oriented methods.
These methods perform well, but the handcrafted features can
only process low-level or midlevel information, resulting in a
poor generalization ability. More recently, deep learning has
been proposed to automatically learn abstract features and
has been shown to be a state-of-the-art approach. As such,
a number of deep learning-based methods [6]–[16] have been
developed for building extraction.

For most deep learning-based methods, the mainstream
methods are the multiscale building extraction methods. They
can be divided into three categories: image pyramid-based
methods [6], combined multiscale images, and parallel deep
networks to extract multiscale buildings, but parallel mod-
ules increase the number of parameters in the network that
leads to a longer training time; filter pyramid-based meth-
ods [13] utilized multiple filters to aggregate multiscale fea-
tures, which is a simple and flexible approach. However,
the features derived from this method are similar; feature
pyramid-based methods [10] cascaded multilayer features
to extract multiscale buildings. Although these methods all
take into account the scale-variance problem, they extract
imprecise building boundaries. As such, other mainstream
methods are the precise building boundary extraction meth-
ods. Knowledge-based methods [17] utilized geometric infor-
mation to extract buildings, but this method is reliant on
additional information. Postprocessing-based methods [18]
adopted a boundary improvement module to refine the building
boundaries.

Although the abovementioned methods perform well, they
cannot distinguish the connected buildings. The instance
segmentation method [19] has recently been proposed to
extract instance masks. As such, connected objects can be
distinguished by making use of each object boundary. There
are two different types of instance segmentation methods:
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1) proposal-based methods and 2) proposal-free methods.
The proposal-based methods build a multistage pipeline to
simultaneously extract objects and produce a classification
map. For example, Dai et al. [19] won the 2015 MS-COCO
instance segmentation challenge by adopting a multitask cas-
cade framework, but they did not consider the occlusion
problem. Li et al. [20] reduced the impact of occlusion by
other instances but obtained a blurry mask; He et al. [21]
simply added a new branch for a semantic mask in Faster
R-CNN [22], obtaining a more precise mask. More recently,
a new approach called the path aggregation network for
instance segmentation [23] modifies the feature pyramid net-
work (FPN) [24] architecture to achieve state-of-the-art per-
formance. Other proposal-free methods [25], [26] transform
an image into an instance mask through pixel embedding,
which can successfully distinguish connected instances, but
not in an end-to-end trainable model. Bai and Urtasun [27]
proposed deep watershed transform for instance segmentation,
but the method is unable to extract object instances bisected by
occlusions; Tighe et al. [28], Yang et al. [29], Zhang et al. [30],
and Mou and Zhu [31] utilized the depth information to
improve the performance of instance extraction.

Recently, the instance segmentation methods [16], [32] are
adopted to extract buildings, which can extract each building
footprint and distinguish connected buildings. However, these
methods do not consider the problems of the scale-variance
and the blurry boundaries in building extraction.

Hence, in this article, to address these limitations, we pro-
pose the novel EMU-CNN method to obtain precise building
masks in remote sensing images. The multiscale features,
which are derived from three parallel branches, are fused
to detect each building position and extract its precise mask
(see Fig. 1).

The main contributions of this article are as follows.
1) The end-to-end trainable EMU-CNN method is pro-

posed for building instance extraction with three com-
ponents: a) a multiscale fusion U-shaped network
(MFUN); b) a region proposal network (RPN); and c)
an edge-constrained multitask network (ECMN). The
evaluation of three typical building data sets confirms
the advantages of EMU-CNN over the other state-of-
the-art methods.

2) The MFUN uses three parallel sub-CNNs to learn mul-
tiscale building features, which can suppress the multi-
scale variations, especially very small building objects.

3) The ECMN is proposed to extract a more precise
building mask for each building instance, even when
the buildings are connected with each other. The edge
constraint loss (ECL) in the ECMN can accelerate the
network convergence and avoid overfitting.

4) A new building data set is labeled for building instance
segmentation evaluation and analysis, which we refer
to as the “self-annotated building instance segmentation
data set.”

II. RELATED WORK

In this section, we discuss the methods related to instance
segmentation and semantic segmentation. These two kinds of
methods segment images in different ways.

Fig. 1. Visualization examples for the proposed EMU-CNN. (a) Original
input image. (b) Multiscale feature maps. (Left to right) “2X” branch, “1X”
branch, and “0.5X” branch. (c) Edge maps extracted by the Sobel filters, left
to right: X-dimension, Y-dimension. (d) Building instance results.

Instance segmentation can be divided into two categories:
proposal-based methods and proposal-free methods. In the
following, the main proposal-based methods are introduced
in detail, which were adopted as the comparison methods in
the experiments conducted in this study. The proposal-based
methods can be regarded as the multitask frameworks,
which detect objects and simultaneously acquire pixelwise
masks. In the following, as the two most advanced meth-
ods [20], [21], fully convolutional instance-aware semantic
segmentation (FCIS) and Mask R-CNN are introduced in
detail.

1) FCIS consists of three steps: a) the feature extrac-
tion architecture; b) the RPN; and c) an additional
convolutional layer for segmentation. First, the feature
extraction architecture is adopted to extract abstract
features. The features are then fed into the RPN to
propose candidate regions with different scales and
aspect ratios. For efficient computation, RoIPooling is
adopted to regularize the feature maps. Finally, a convo-
lutional layer is utilized to achieve instance segmentation
by using position-sensitive inside/outside score maps,
which can reduce the impact of occlusion by other
instances.
FCIS considers the relationship between instance and
background but does obtain blurry boundaries for very
small scale objects. By contrast, EMU-CNN obtains a
more precise mask by adopting the ECMN.

2) Mask R-CNN consists of an FPN [24] for feature
extraction, an RPN for precise region proposal, and a
semantic mask branch. First, the imagery is fed into
the FPN. The FPN combines top–down and bottom–up
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Fig. 2. Overview of the proposed framework, including (Left) MFUN, (Middle) RPN, and (Right) ECMN. The MFUN fuses the features with different scales
to overcome the problem of scale variance in a single remote sensing image. The RPN utilizes the attention mechanism to extract the building instances. The
ECMN adopts the ECL to segment a precise mask. Finally, EMU-CNN outputs a mask corresponding to the different building instances.

layers to construct a U-shaped architecture. It integrates
the multistage features with lateral connections and adds
an alternative classifier after each stage. The RPN is
then adopted for the region proposal. Different from
FCIS, RoIAlign is used to replace RoIPooling. There
are four sampling points in each bin, and RoIAlign
computes the value of each sampling point by bilinear
interpolation on the feature map. To obtain precise loca-
tions, no quantization is performed on any computation.
Finally, a semantic mask branch is added after the region
proposal, which adopts a deconvolution layer to remap
back to the original size.
Mask R-CNN can obtain a more precise instance
mask and solve the scale-variance problem, to a cer-
tain extent. However, its performance is far from ade-
quate for building instance extraction in remote sensing
imagery. Thus, the proposed method extracts features
from different-resolution images, as well as different
stages to solve the scale-variance problem, and utilizes
the building boundary information to obtain a more
precise mask.

The semantic segmentation model consists of an encoder,
a decoder, and a prediction head, and it classifies each pixel
into a certain class.

The fully convolutional network (FCN) [33] is introduced as
an example. At the encoder stage, FCN utilizes VGGNet [34]
as an encoder to extract semantic information. At the decoder
stage, a deconvolution layer is adopted to bilinearly upsam-
ple the encoder’s outputs to pixelwise outputs. After this,
the semantic information from the deep layer and the appear-
ance information from the shallow layer are combined by a
summation operation. At the prediction head, during testing,
SoftMax is adopted as a linear classifier to determine each
pixel’s class. During training, the logistic loss is calculated on
each pixel and summed. A final loss is then used for backward
and parameter updating.

However, semantic segmentation methods cannot extract
building instances. In addition, both the instance segmen-
tation and semantic segmentation methods cannot solve

the long-standing problems of scale variance and blurry
boundaries.

III. MULTISCALE U-SHAPED CNN BUILDING INSTANCE
EXTRACTION FRAMEWORK WITH EDGE CONSTRAINT

In this work, the EMU-CNN instance segmentation
approach is proposed to extract a building mask from
high-resolution remote sensing imagery. The proposed method
is an end-to-end trainable approach, with convolutional fea-
tures shared in both the building detection and semantic
segmentation. The network architecture of EMU-CNN con-
sists of three components, i.e., MFUN, RPN, and ECMN,
as illustrated in Fig. 2. First, the remote sensing images
are fed into the MFUN for multiscale feature learning. The
MFUN includes three parallel pretrained ResNet sub-CNNs,
which are followed by a fusion operation and a U-shaped
deconvolution network to learn building features with different
scales. Second, RPN is adopted to extract building instance
positions. The RPN introduces an attention mechanism to
extract building bounding boxes (bboxes), which can eliminate
the influence of occlusion between overlapping buildings.
Finally, according to the building positions, the ECMN is
proposed to extract a precise mask and suppress overfitting
through the ECL.

A. MFUN for Building Feature Fusion
In order to learn robust features with various scales, each

input image is preprocessed into three streams of different
sizes: a 2× stream (by 2× interpolation), a 1× stream (original
size), and a 0.5× stream (by downsampling). Instead of the
“one-size-fits-all” feature extractor in the traditional CNN,
the MFUN trains three parallel feature branches tuned for
different-scale streams. Especially, the MFUN architecture
consists of three parallel feature branches, two fusion oper-
ators, and four U-shaped deconvolution blocks, as shown
in Fig. 3. Each branch is composed of the input stream and
a pretrained ResNet model. The first branch includes the 2×
stream and a three-block ResNet model, the second branch
includes the 1× stream and a two-block ResNet model, and the
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Fig. 3. Architecture of the MFUN. The MFUN consists of three parallel feature branches. The first branch includes the 2× stream and a three-block ResNet
model, the second branch includes the 1× stream and a two-block ResNet model, and the third branch includes the 0.5× stream and a one-block ResNet
model. The two fusion operators integrate the multiscale convolutional features in a hierarchical way. After this, four U-shaped deconvolution blocks are used
to extract the fused features with different resolutions (which is simply depicted by the parabola), followed by multiple classifiers.

third branch includes the 0.5× stream and a one-block ResNet
model. The two fusion operations (generated by summation)
then jointly integrate the multiscale feature maps from the
three branches. To improve both the efficiency and accuracy,
the dimensions of “Fusion 1” and “Fusion 2” are modified to
64 and 256, respectively. The feature maps then go through
a chained residual pooling (CRP) block (as defined in [35])
to capture the contextual information. Finally, the output is
fed into ResNet Block-4 and Block-5, parameterized by the
pretrained ResNet model.

After ResNet Block-5, four U-shaped deconvolution
blocks (UDNs) are used for discriminative feature extrac-
tion via integrating the midlevel and high-level representa-
tions. As shown in Fig. 3, each UDN block consists of
an upsampling and deconvolution operation (followed by a
batch-normalization layer and a nonlinear activation layer,
ReLU). Each block is followed by an auxiliary classifier.
In the process of forward propagation, all the outputs of the
classifiers are integrated, while, in the backward propagation,
a total loss is calculated to contribute to each classifier.

Note that the multiscale inputs may result in a high com-
putational cost. To address this issue, the residual convolution
unit (RCU) block (as defined in [35]) is modified by adding a
1 × 1 dimension reduction layer and a 3 × 3 convolutional
layer, which is followed by the fusion operator. Consider-
ing the problem of representational bottlenecks, the 5 × 5
max-pooling layer in the CRP block is followed by a 1 × 1
convolutional layer. The current model results in a speed
increase of nearly 40% on the original basis, as well as
avoiding overfitting, due to the reduced parameters.

B. RPN for Building Instance Detection
After obtaining the multiscale building features, the RPN is

used to detect single building instance positions, which is an

Fig. 4. Architecture of the RPN. The RPN consists of an intermediate
convolutional layer and two sibling convolutional layers, which are adopted
for the classification and bbox regression. Anchor: box with different scales
and aspect ratios.

approach that was first proposed by Ren et al. [22]. It is worth
noting that the multiscale inputs are fed into several parallel
RPNs, and then, multiple proposals are aggregated together.
In order to explain the structure of the RPN more clearly, only
one branch is introduced.

As demonstrated in Fig. 4, the RPN consists of an inter-
mediate convolutional layer, two sibling convolutional layers,
and an anchor. Each pixel of the aforementioned intermediate
convolutional layer is projected back to multiple candidate
regions of the original image. This is realized by introducing
an anchor, i.e., a box with many kinds of scales and aspect
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Fig. 5. Architecture of the ECMN. In this architecture, a hybrid loss function
is introduced into multitask learning to obtain a more precise mask. First,
the Sobel filters are adopted in both the predicted mask and ground truth.
The ECL is then computed over these two edge maps. Finally, a hybrid
multitask loss function considering classification, bbox regression, semantic
segmentation, and ECL is adopted to optimize the whole architecture.

ratios, the number of which is k. By default, k = 12, i.e., there
are 12 anchors with four scales (4, 8, 16, and 32) and three
aspect ratios (1:1, 1:2, and 2:1). These k candidate regions are
then fed into two sibling convolutional layers (for classification
and bbox regression). For the classification branch, the 2k
SoftMax output is calculated to divide the candidate region
into positive (object) and negative (no object) samples that are
normalized by the minibatch size number (i.e., Ncls = 256).
For the bbox regression branch, the bbox is refined by smooth
L1 loss, which is based on the building’s central coordinates.
This branch is utilized to refine the building’s position. The
box regression loss is then normalized by the number of
anchor locations, i.e., there are W • H • k anchors. W and H ,
respectively, represent the width and height of the feature map.
Finally, the bbox corresponding to a single building instance
is detected.

C. ECMN for Precise Mask Extraction
According to the detected instance positions, the ECMN is

proposed to extract each precise mask and suppress overfitting
by using a hybrid loss function, as shown in Fig. 5. The mul-
tiple losses, which consist of the classification loss, the bbox
loss, the segmentation loss, and the ECL, are calculated based
on the region of interest (RoI, a candidate region that may be
an object). During training, an RoI is positive if its intersection
over union (IoU) is related to the nearest ground-truth object
that is larger than 0.5; otherwise, it is regarded as negative.
The hybrid loss function is defined as follows:

L = Lcls + �1 pLbbox + �2 pLseg + �3 pLedge (1)

where p � {0, 1} corresponds to the negative and positive RoI.
Lcls, Lbbox, Lseg, and Ledge represent the four terms of object
classification loss, bbox regression loss, segmentation loss, and
ECL, respectively. Among the four terms, Lcls and Lseg are
computed by a SoftMax function. Lbbox is computed utilizing
smooth L1 loss; �1, �2, and �3 are weighting factors used to
balance the contributions of the four terms. By default, �1 = 1,
�2 = 1, and �3 = 1, which means that these four terms are of
equal importance. The first two values are the same as those
defined in [21]. �3 is identical to the term defined in [36].
In the following, these loss terms are introduced in detail.

1) Classification Loss LclsLclsLcls: The negative log of the Soft-
Max output. This term is based on the pixels within the
RoI. xi represents the predicted value of the i th object,
and yi represents the ground truth of the i th object. The
classification loss is defined as

Lcls(x) = �
�

i

yi log

�
exp(xi)�
j exp(x j )

�

. (2)

2) Bbox Regression Loss LbboxLbboxLbbox: Smooth L1 loss. This term
is based on the pixels within the RoI. ti predicted the
i th box’s center coordinates and its width and height (x,
y, w, h). t�i predicts the ground-truth center coordinates
and its width and height. The bbox regression loss is
defined as

Lbbox
�
ti � t�i

�
=

�
0.5

�
ti � t�i

�2, if
		ti � t�i

		 < 1		ti � t�i
		 � 0.5, otherwise.

(3)

3) Segmentation Loss LsegLsegLseg: Negative log of the SoftMax
output, based on the pixels within the RoI. xp represents
the predicted value of the pth pixel, and y represents the
ground truth. The segmentation loss is defined as

Lseg(xp) = �
�

p
yp log

�
exp(xp)�
j exp(x j )

�

. (4)

4) ECL: This term is proposed to constrain the differences
between the boundaries of the predicted instance mask
and the ground truth. First, the Sobel filters (first-order
edge filter) in both horizontal and vertical directions are
adopted on both the predicted mask and the ground
truth. It is worth noting that this pair of filters are
adopted on both the foreground (building region) and
background (nonbuilding region), which differs from the
approach adopted in [36], where only edge detection
on the foreground is considered. Edge detection on
both the background and foreground can eliminate false
alarms, which is useful for building extraction. After
this, the score map is computed by the ECL function.

y represents the predicted value, and y represents the
ground truth. Mathematically speaking, the ECL can be
defined as

L(
y, y)) =
(|
y � y|)2

2
. (5)

D. Discussion

In this section, we give a brief discussion of the differences
between the proposed method and some of the existing end-
to-end methods.

1) Faster R-CNN [22]: Both EMU-CNN and Faster R-CNN
adopt RPN to extract the object instances. However, these
methods have three differences.

1) EMU-CNN can extract each building’s mask, while
Faster R-CNN can only locate each building’s position
using a bbox.
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Fig. 6. Distribution of the building scales in (a) ISPRS Vaihingen semantic
labeling contest data set and (b) self-annotated data set.

2) EMU-CNN utilizes the MFUN to extract multiresolution
and multiscale features, which is more suitable for mul-
tiscale building extraction, while Faster R-CNN extracts
single-scale features from an image, with a fixed size.

3) EMU-CNN utilizes both ECL and segmentation loss.
ECL and segmentation loss can acquire precise bound-
aries, while Faster R-CNN can only extract the object’s
box.

2) Mask R-CNN [21]: The proposed method differs from
Mask R-CNN in two aspects.

1) EMU-CNN adopts the MFUN to extract multiresolu-
tion/multiscale features that are specially designed for
remote sensing imagery, while Mask R-CNN does not
take the characteristics of remote sensing imagery into
account.

2) EMU-CNN introduces geometric information into the
deep learning network to enhance the performance of
the building extraction, while Mask R-CNN does not
consider the building’s geometric information.

3) Method Proposed in [36]: Both EMU-CNN and the
method proposed in [36] can segment each building footprint.
However, they have two differences.

1) EMU-CNN adopts the MFUN to extract multiresolu-
tion/multiscale features and is, thus, more robust for
remote sensing imagery.

2) EMU-CNN utilizes ECL on both the foreground
(building) and background (nonbuilding), which is use-
ful for eliminating false alarms, while the method in [36]
does not consider the background.

IV. EXPERIMENTS

A. Data Sets
In the experiments, the proposed approach was applied to

three challenging building segmentation data sets, i.e., the
ISPRS Vaihingen semantic labeling contest data set, the WHU
aerial image data set, and a self-annotated building instance
segmentation data set. Fig. 6 shows the distributions of the
building scales in the ISPRS data set and the self-annotated
data set, where it can be seen that most of the object scales
of the data sets are small. Compared with the ISPRS data set,
the object scales of the self-annotated data set are smaller.

1) ISPRS Vaihingen Semantic Labeling Contest Data
Set: The ISPRS Vaihingen semantic labeling contest data
set [37] consists of near-infrared, red, and green orthorectified

Fig. 7. Samples of the ISPRS Vaihingen semantic labeling contest data set.

imagery. These three channels were transformed into RGB
color imagery during training. The data set is made up
of 33 large image patches of 2500 × 2500 pixels, the ground
sample distance (GSD) of which is 9 cm. Sixteen tiles were
labeled with the ground truth and were randomly cropped into
fixed-size images of 600 × 600 pixels. All the cropped images
were then sliced into training, evaluation, and test data sets,
with the proportion of 5:3:2. Samples of the cropped images
are shown in Fig. 7.

2) WHU Aerial Image Data Set: The WHU data set [32]
consists of an aerial image data set and two satellite image
data sets, among which the aerial image data set was utilized to
evaluate the proposed method’s generalization ability. The spa-
tial resolution of the WHU aerial image data set is 0.3 m, and it
is similar to the self-annotated building instance segmentation
data set (introduced in Section IV-A3). The WHU aerial image
data set covers 450 km2 in Christchurch, New Zealand. In this
data set, there are 2416 tile images with 512 × 512 pixels
in the test set (a total of 42000 buildings). This aerial image
data set was utilized to evaluate EMU-CNN’s generalization
ability in different lighting and atmospheric conditions, sensor
qualities, scales, and building architectures, as demonstrated
in Fig. 8.

3) Self-Annotated Building Instance Segmentation Data Set:
This data set was annotated and built independently by the
authors. The remote sensing images of this building instance
data set were collected from the UC Merced data set, the Aer-
ial Image Data set (AID) data set, and some other remote
sensing images. The original images of the UC Merced data
set [38] were acquired from the United States Geological Sur-
vey (USGS) National Map program, with a spatial resolution
of one foot (nearly 0.3048 m), cropped into fixed sizes of
256 × 256 pixels. The AID data set [39] is a large-scale
aerial imagery data set, the images of which were downloaded
from Google Earth imagery. It is worth noting that the other
remote sensing images in the building instance data set are all
high-resolution remote sensing images. These three data sets
were combined and cropped into tiles of 256 × 256 pixels.
The self-annotated building instance segmentation data set
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Fig. 8. Samples of the WHU aerial image data set.

Fig. 9. Samples of the self-annotated building instance segmentation data
set.

consists of 1488 tiles with 256 × 256 pixels and a total
of 13108 buildings. For annotation, the building instance mask
was labeled by class ID and instance ID (the order number in
an image). Some typical buildings were chosen as examples
and annotated by remote sensing experts, and the boundaries
of the buildings were marked. The remaining buildings were
then annotated according to the examples. Finally, all the
annotated labels were checked again by the remote sensing
experts. Buildings under trees were annotated by directly
connecting a straight line. The self-annotated data set consists
of multiresolution, multisensor images that were captured
from different areas in different weather conditions. As such,
the data set is challenging, as well as valuable. Some samples
from the self-annotated building instance segmentation data
set are shown in Fig. 9.

B. Experimental Setup and Results
To increase the diversity, rotate, flip, and brightness oper-

ations were adopted on each remote sensing image, which
enlarged the volume of the data sets by 12 times.

TABLE I
EXPERIMENTS ON THE SELF-ANNOTATED DATA SET. THE BEST

RESULTS ARE HIGHLIGHTED IN BOLD

The proposed approach was compared with the state-of-the-
art methods of FCIS [20], Mask R-CNN [21], Mask R-CNN +
edge filter [36], and a popular proposal-free method [40], on all
three data sets. FCIS was proposed by Li et al. [20] and is the
first end-to-end fully convolutional instance segmentation net-
work. FCIS is based on R-FCN [41] and Instance-FCN [19].
Mask R-CNN has achieved state-of-the-art performances in
instance segmentation. It simply adds a branch of semantic
segmentation to Faster R-CNN [22] and changes RoIPooling
into RoIAlign. Mask R-CNN + edge filter [36] adds an
edge filter to Mask R-CNN to extract a precise mask. The
proposal-free method consists of DeepLab v3+ [40] (for
semantic segmentation) and connected component processing
(for postprocessing). The latter architecture is used to trans-
form the semantic mask into an instance mask.

The metric of mean average precision (mAP) based on
each pixel is used to assess the quantitative performance. The
mAP represents the relationship between the precision and
recall, indicating the arithmetic mean of C + 1 categories.
The average precision of each category can be calculated by
integrating the area under the precision–recall (P-R) curve.
Precision and recall can be defined as follows:

Precisioni =
TPi

TPi + FPi
, Recalli =

TPi

TPi + FNi
(6)

where TPi is the number of true positives of the i th class.
FPi and FNi represent the number of false positives and false
negatives, respectively. These metrics are calculated by using
the IoU threshold between the predicted score maps and the
ground truth, based on pixels.

The proposed model was trained and fine-tuned based on the
MXNet [19] platform. The shared convolutional layers were
initialized with the released pretrained ResNet-50 model. The
initial learning rate was set to 0.004 at the beginning, with a
weight decay rate of 0.0001 and a momentum value of 0.9.
Stochastic gradient descent (SGD) optimization was used, and
the model was trained on a single Tesla K40C or Titan X GPU.
The source code of the proposed model will be released on
GitHub in the future.

1) Evaluation With the Self-Annotated Building Instance
Segmentation Data Set: Table I lists the results of the
experiment with the proposed EMU-CNN, FCIS [20], Mask
R-CNN [21], Mask R-CNN + edge filter [36], and modified
DeepLab v3+ [40]. “mAP,” “pre,” and “rec” in the table
represent mAP, precision, and recall, respectively. As can be
seen, the mAP of the proposed method exceeds that of Mask
R-CNN by 2.4% and 3.1% with IoU = 0.5 and IoU = 0.7,
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Fig. 10. mAP versus IoU over the self-annotated data set.

TABLE II
EXPERIMENT ON THE ISPRS VAIHINGEN SEMANTIC LABELING CONTEST

DATA SET. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

respectively. By comparing the precision and recall among the
different methods, it can be seen that the proposed EMU-CNN
can distinguish positive and negative samples more effectively.
Moreover, the relationship between the mAP and IoU is
depicted in Fig. 10. As shown in this figure, the proposed
method performs better than the state-of-art Mask R-CNN
model. The proposal-free method performs poorly since it
cannot distinguish connected building instances well in this
data set.

2) Evaluation With the ISPRS Vaihingen Semantic Labeling
Contest Data Set: The experiment with the ISPRS Vaihingen
semantic labeling contest data set shows that EMU-CNN is
also robust to large-scale buildings. As shown in Table II,
the mAP of the proposed method exceeds that of Mask R-CNN
by 0.2% when the IoU is 0.5. However, when the IoU is larger,
Mask R-CNN performs slightly better. This can be explained
by the increased number of parameters in EMU-CNN causing
an overfitting problem.

To analyze the robustness of the proposed EMU-CNN for
different scales, the mAP versus IoU curve is shown in Fig. 11.
As shown in the figure, when the IoU is smaller than 0.6,
EMU-CNN performs better than Mask R-CNN, and vice versa.
This shows that the EMU-CNN method is robust for use with
smaller scale buildings.

3) Evaluation on Cross-Data Sets: To verify the general-
ization ability of the proposed method, Table III compares
the performance of EMU-CNN systems with different models
and training data. Trained self-annotated models were used
to evaluate the very challenging WHU aerial image data set

Fig. 11. mAP versus IoU over the ISPRS Vaihingen semantic labeling contest
data set.

TABLE III
CROSS-DATA SET EXPERIMENT ON THE TRAINED SELF-ANNOTATED

MODEL. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

for robustness testing. As shown in Table III, EMU-CNN
performs better than Mask R-CNN in generalization ability,
and the mAP of the proposed method exceeds that of Mask
R-CNN by 5.4% and 2.4% with an IoU of 0.5 and 0.7,
respectively. The analysis of both the precision and recall
confirms that EMU-CNN performs better as it recalls more
positive instances. In addition, for the trained ISPRS models
using EMU-CNN and Mask R-CNN, they are all invalid on
the WHU aerial image data set because of the resolution
difference. Thus, the results are not exhibited.

Some visualization results for the WHU aerial image data
set are shown in Fig. 12. The first and third rows represent
the results of EMU-CNN without ECL (i.e., with only the
MFUN architecture), while the second and fourth rows show
the results of Mask R-CNN. Typically, the results of Mask
R-CNN include large regions that are not buildings. Overall,
it can be seen that the proposed method can effectively extract
buildings with different scales.

C. Ablation Study and Discussion
1) Quantitative Analysis of the Different Branches of the

MFUN: To demonstrate the effectiveness of each branch in
the MFUN, an ablation experiment was conducted. This was
done by setting a certain branch’s weight factor to 0 (which
means that this branch’s feature maps were not concatenated
into the fused output). The results are listed in Table IV.

All the methods were evaluated on the self-annotated data
set. As is shown, the first row shows the results of the proposed
model, which performs the best on the self-annotated data
set. Interestingly, the model with the “2×” branch is more
effective.
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Fig. 12. Visualization results of the evaluation on the cross-data sets: trained on the self-annotated data set, tested on the WHU aerial image data set. (a) First
row: EMU-CNN and second row: Mask R-CNN. (b) First row: EMU-CNN and second row: Mask R-CNN.

Apart from this, by comparing the results of the “2 × +1×”
model and the “2 × +0.5×” model, it is demonstrated
that the “1×” branch is more important than the “0.5×”
branch. By visualizing the final mask of the “0.5×” model, it is
found that there are no buildings extracted, due to the coarse
feature map. The “0.5×” model can be regarded as a building
detector, but not as a mask extractor. Hence, it is unsuitable for
buildings with a small size, as in the self-annotated data set.
This also leads to the combination of “1×+0.5×” performing
worse than the “1×” branch.

We also evaluated the fusion operations in the MFUN. The
“Fusion 2” model in this table represents only utilizing the
feature map from the Fusion 2 operation. This experiment
shows that the Fusion 2 operation can extract more important
features than the Fusion 1 operation.

This experiment reveals that the MFUN can learn effective
multiscale building features due to the three parallel convolu-
tional branches and the two hierarchical fusion operations.

2) Analysis of the Multiscale Feature Maps in the MFUN:
To explain why the MFUN is effective, feature map out-
puts from streams with different resolutions are depicted
in Fig. 13(a) and (b).

Fig. 13(a) represents feature maps fed into the first fusion
operation, while Fig. 13(b) represents the second fusion oper-
ation. As indicated, local features can be extracted from
the higher resolution branch (the first row exhibits more
details), while global features can be extracted from the lower
resolution branch (the second and third rows reveal the spatial
relationship between the road in the middle and the buildings).
Visualization of the feature maps from the fusion operation
indicates that the second fusion operation can extract more
complete information, while the first fusion operation tends
to obtain local information [see Fig. 13(c)]. Features from
the UDNs are exhibited in Fig. 13(d). “Deconv1” (the first
row) represents the features from the final deconvolution
layer. Clearly, these features focus more on spatial information
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TABLE IV
ABLATION EXPERIMENT FOR THE EFFECTS OF THE DIFFERENT
BRANCHES. EACH COLUMN IN “MAP@IOU” REPRESENTS THE

mAP UNDER DIFFERENT IOUS (I.E., 50%, 60%, AND 70%)

Fig. 13. Visualization of the feature maps. (a) Input branch in Fusion 1
operation. (b) Input branch in Fusion 2 operation. (c) Outputs of Fusion
operations. (d) Outputs of four deconvolution layers.

and tend to locate where buildings are located. By contrast,
“Deconv4” can extract more abstract features while focusing
less on spatial information.

3) Analysis of the Instance Proposal in the RPN Based
on Different CNNs: To evaluate the performance of the
instance proposal based on the MFUN, an ablation experiment

Fig. 14. Total training loss versus iteration on Mask R-CNN and EMU-CNN
without and with ECL.

TABLE V
EXPERIMENTS WITH REGARD TO THE PERFORMANCE OF INSTANCE

PROPOSAL IN THE RPN BASED ON DIFFERENT CNNS.
THE BEST PERFORMANCE IS HIGHLIGHTED IN BOLD

TABLE VI
ABLATION EXPERIMENT WITH THE SELF-ANNOTATED DATA SET

comparing the proposed MFUN and a popular CNN was
conducted. The performance of the instance proposal is quite
relevant to the building extraction since it determines whether
the building instances are extracted properly. The experiment
was implemented on the self-annotated data set (as shown
in Table V). As indicated, the proposed method recalls more
positive samples, especially when the IoU is higher. This can
be explained by the fact that the proposed method extracts
features with multiple scales and is suitable for small-scale
building extraction.

4) Analysis of the ECL in the ECMN: In Table VI, an abla-
tion experiment comparing EMU-CNN with (w) and without
(w/o) ECL is shown. This illustrates that EMU-CNN with ECL
obtains a better performance. As exhibited in the table, both
the precision and the recall of EMU-CNN are higher than those
of the compared method. This means that the building mask
extracted by the proposed method is more precise. It is worth
noting that the performance of the proposed ECL is better than
that of the method proposed in [36], which indicates that both
the foreground (building region) and background (nonbuilding
region) are supervised by the edge filters.
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Fig. 15. Visualization results of the proposed method (with only MFUN architecture) and Mask R-CNN. The first and third rows represent the results of
EMU-CNN without ECL (with only the MFUN architecture), while the second and fourth rows exhibit the results of Mask R-CNN (the differences between
the two methods are pointed out with the red arrows). (a) Sparse building. (b) Dense building.

As demonstrated, the ECL also helps the network to
converge to a lower loss. Fig. 14 describes the training iteration
of Mask R-CNN and EMU-CNN, with and without ECL. The
total training loss consists of the object classification loss,
the bbox regression loss, and the segmentation loss. The blue,
green, and red lines represent the total loss of Mask R-CNN,
EMU-CNN without ECL, and EMU-CNN with ECL, respec-
tively. It can be seen that EMU-CNN both with and without
the ECL results in a lower loss than Mask R-CNN. In addition,
at the end of the training, EMU-CNN with ECL results in a
lower loss than EMU-CNN without ECL. This proves that the
ECMN speeds up the convergence of the whole model.

5) Building Extraction Examples and Analysis: To evalu-
ate the proposed MFUN architecture intuitively, visualization
of the predicted results for the self-annotated data set is
provided in Fig. 15. The first and third rows represent the
results of EMU-CNN without the ECL (i.e., with only the

MFUN architecture), while the second and fourth rows exhibit
the results of Mask R-CNN. By comparing the results, it can
be observed that some nonbuilding regions that are wrongly
extracted by Mask R-CNN are ignored by the MFUN. Some
buildings with a very large or small scale are neglected by
Mask R-CNN but are detected successfully by the MFUN.
What is more, some cars with rectangular shapes are detected
as buildings by Mask R-CNN but are successfully distin-
guished by the MFUN. The proposed MFUN network extracts
features from different resolutions and fuses them, which
extracts more local and global information and helps to detect
instances at different scales.

Fig. 16 shows a visualization of the predicted results of
EMU-CNN and Mask R-CNN. As shown in Fig. 16(a), the two
rows represent the results of EMU-CNN and Mask R-CNN,
respectively, in order, while, in Fig. 16(b), a certain region is
magnified, and more details are exhibited. It can be observed
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Fig. 16. Visualization of the ECL. (a) First row represents the results of EMU-CNN, while the second row represents the results of Mask R-CNN. To show
the details, certain regions are magnified and exhibited in (b).

that, with the auxiliary of the ECL, the instances’ boundaries
are smoother and better fit the outlines of the buildings.

To evaluate the performance of EMU-CNN intuitively,
Fig. 17 shows the predicted results of EMU-CNN with the
three data sets.

6) Analysis of Building Extraction in Complex Scenar-
ios: In this section, we describe the thorough evaluation of
the proposed method conducted under different challenging
circumstances. As pointed out by Khosravi et al. [1] and
Khosravi and Momeni [42], building extraction in urban
areas is a complex problem, in some cases, which can be
summarized as follows: 1) when the shadows or vegetation are
in the proximity of (or even intrusive of) the buildings; 2) when
the buildings are diverse in terms of height and the images
are oblique; 3) when there is low contrast (high similarity)
between the buildings and nonbuilding regions; and 4) when
there is an irregular alignment and building blocks are present.

As shown in Fig. 18, the visualization results for some typical
buildings in these complex scenarios are exhibited to evaluate
the performances of the proposed method and Mask R-CNN.
Overall, it can be seen that the proposed method performs
better than Mask R-CNN in the abovementioned complex
scenarios.

From the analysis of the visualization results, we can make
the following conclusions.

1) As shown in Fig. 18(a), buildings can be distinguished
from shadows and vegetation well by our method. This
can be explained by the fact that the proposed MFUN
can extract robust features and spectra, as well as texture
information, which can be better utilized by the proposed
EMU-CNN.

2) As shown in Fig. 18(b), the geometric information of
the roof is regular. In this way, even if the side view of
the buildings can be observed in addition to the building
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Fig. 17. Evaluation with (a) ISPRS Vaihingen semantic labeling contest data set, (b) WHU aerial image data set, and (c) self-annotated building instance
segmentation data set.

Fig. 18. Visualization results for buildings in complex scenarios. (a) When the shadows or vegetation are in the proximity of the buildings. (b) When the
buildings are diverse in terms of height and the images are oblique. (c) When there is low contrast (high similarity) between buildings and nonbuilding regions.
(d) When there are an irregular alignment and building blocks. First column: original image with labels. Second column: visualization results of the proposed
EMU-CNN. Third column: Mask R-CNN results.

roofs, the roofs of the buildings can be extracted well.
This makes sense since only building roofs are annotated
artificially, and the proposed EMU-CNN learns features
extracted from the building roofs.

3) In Fig. 18(c), buildings with low contrast can also be
extracted from nonbuilding regions by the proposed
method. Due to the proposed ECMN, which introduces
geometric information into the deep learning model, this
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