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ABSTRACT

In real-world applications, factors such as illumination variation, occlusion, and poor image quality, etc.
make head detection and pose estimation much more challenging. In this paper, we propose a multi-level
structured hybrid forest (MSHF) for joint head detection and pose estimation. Our method extends the
hybrid framework of classification and regression forests by introducing multi-level splitting functions
and multi-structural features. Multi-level splitting functions are used to construct trees in different layers
of MSHF. Multi-structured features are extracted from randomly selected image patches, which are either
head region or the background. The head contour is derived from these patches using the signed distance
of the patch center to the head contour by MSHF regression. The randomly selected sub-regions from the
patches within the head contour are used to develop the MSHF for head pose estimation in a coarse-to-
fine manner. The weighted neighbor structured aggregation integrates votes from trees to achieve an esti-
mation of continuous pose angles. Experiments were conducted using public datasets and video streams.
Compared to the state-of-the-art methods, MSHF achieved improved performance and great robustness
with an average accuracy of 90% and the average angular error of 6.6°. The averaged time for performing
a joint head detection and pose estimation is about 0.44 s.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Head detection and pose estimation are the key steps in many
computer vision applications, such as human computer interac-
tion (HCI), intelligent robotics, face recognition, and recognition
of visual focus of attention [1-3]. The former locates the position
of a face, and the latter estimates the three dimensional rotation
angles of the head according to the orientation of the face. The
existing techniques achieve satisfactory results in well-designed
environments. Head detection! and pose estimation have been ap-
proached as separate problems, and various techniques were devel-
oped, such as scanning window classifiers, view-based eigenspace
methods, and elastic graph models, etc. [4]. Head detection has
been dominated by scanning window classifiers, among which is

* Fully documented templates are available in the elsarticle package on CTAN.
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1 Head location, face detection, and head contour detection are terms frequently
used in the applications that require to locate the human face. In this paper, we use
these terms interchangeably.
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Viola and Jones face detector [5]. Recently, Convolutional Neural
Networks (CNNs) have been applied to profile head detection and
achieved improved results [6,7]. In real-world applications, how-
ever, factors, such as illumination variation, occlusion, poor image
quality, etc., make the detection and pose estimation much more
challenging [8,9]. Yet, its performance decreases from distortions
and side-views of head pose, such as bowing the head and looking
to the side, because most methods assume accurate head detec-
tion that shows a front or near-front view. Errors in head detec-
tion negatively impact pose estimation [6]. Hence, we propose a
multi-level structured hybrid forest (MSHF) with multi-structured
features for joint head detection and pose estimation. The MSHF is
an ensemble learning model that aggregates multi-structured fea-
tures extracted from randomly selected image patches. The multi-
structured features extracted for head detection ensure the rele-
vance to human head and, hence, provide an accurate description
of the head pose. The many patches extracted within a head re-
gion allow ensemble to construct a diverse set of classifiers for a
more robust detection and estimation that circumvents the afore-
mentioned distortions.

This paper presents a MSHF approach for joint head detection
and pose estimation that extends a framework of classification and
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Fig. 1. The flowchart of our MSHF method. Multi-structured features are extracted from randomly selected image patches, which are either head region or the background,
firstly. Then, the head contour D is derived from these patches using the signed distance of the patch center to the head contour by MSHF regression. The randomly selected
sub-regions from the patches within the head contour are used to develop the MSHF for head pose estimation in a coarse-to-fine manner, as shown L1 to L4 layer in the
figure. In the L5 layer, the weighted neighbor structured aggregation integrates votes from trees to achieve an estimation of continuous pose angles 0y, pitch-
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Fig. 2. Multi-structured features. (a) Intensity, Sobel edges and HOG features, (b) la-
bels and each colored patch belong to a distinct class, (c) a set of multi-structured
features q; = {f;; ¢;, D;, H"} that randomly sampled from the image, where H["
{2,1,(60°,45°)} represent that the head pose class labels (2, 1) in horizontal and
vertical directions and the angles are (60°, 45°). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this arti-
cle).

q; =3¢, D H" = {2,1,(607,457) 1}
()

Patches-based Multi-Structure features

Patches-based and Probabilistic models of head contour

Multi-Structure features

---------- >
Ed v _gog.s &
@;.&plunny function ¥y : —————— » ﬁ@ Splitting function V2

@m@

@

@ 7D mplel) @pthle.Dl) A pSle.D.)

Fig. 3. The MSHF training model in head detection and pose estimation. The left
image shows a tree constructed in the head detection layer, and the right image
illustrates a tree constructed in detection-estimation layer.

regression forests by introducing multi-level splitting functions and
multi-structural features to achieve a joint head detection and pose
estimation. Multi-level splitting functions are used to construct
trees in different layers of MSHF and the overall architecture is
shown in Fig. 1. Multi-structured features are extracted from the
randomly selected image patches, which ensure that these features
are highly relevant to human head and, hence, provide an accurate

description of the head pose. The identified head patches are ag-
gregated into a head contour using sign distance with respect to
the head contour. The randomly selected sub-regions within a head
contour are used to develop a MSHF in a coarse-to-fine manner.
The ensemble aggregates local features for head detection, which
are used for pose estimation. The head pose is estimated by in-
tegrating weighted votes from the hybrid classification-regression
trees, which achieves a continuous angle. The many patches ex-
tracted within a head region allow ensemble to construct a diverse
set of classifiers for a more robust detection and estimation.
Our contributions include the following:

. A multi-level structured hybrid forest method is proposed for
joint head detection (including head location and contour de-
tection) and continuous head pose estimation (including pose
classification and regression) in unconstrained challenging en-
vironments.

. Continuous head poses are decided using patches based on the
detected head contour, where the weighted neighbor structured
aggregation is used to achieve continuous pose angles in multi-
probabilistic model regression.

. The MSHF detects head region (a classification process) and
obtains contour location (a regression process), which delivers
more accurate head contour detection by suppressing errors in
head pose estimation.

The rest of this paper is organized as follows: Section 2 re-
views the related work on head detection and pose estimation.
Section 3 presents our multi-level structured hybrid forest method.
Section 4 discusses the experimental results using publicly avail-
able data sets and our data sets. Section 5 concludes this paper
with a summary of our method.

2. Related work

Many methods have been proposed for head detection and pose
estimation as separate problems. We refer the readers to the re-
cent surveys [1,10] and the references therein. For head detection,
a widely used method is Adaboost classifiers with Haar-like fea-
tures [11], a popular method of which is the Viola Jones face de-
tector [5]. Deformable Parts Model (DPM) [12] based face detection
methods have also been proposed in the literature, where a face is
defined as a collection of parts. It is shown that in unconstrained
environments, partially visible face detection is still a challenging
problem. Yet, far distance, various illuminations, occlusion, low im-
age resolution, expression, and make-up degrade its performance.
Recently, Deep Convolutional Neural Networks (DNNs) is applied
for head detection [6,7,13], which achieved improved performance
in cases such as multi-view occlusion and low image resolution.
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The improvement, however, heavily relies on the large number of
training sets and high performance computing power.

Head pose estimation is usually achieved using template match-
ing, subspace embedding, and tracking methods [1]. Methods, such
as neural networks (NN) [14], support vector machines (SVM) [8],
nearest prototype matching [15], manifold embedding [16] and
random forest [17-19], have gained popularity for head pose es-
timation in natural environment. Gourier et al. [14] applied an
auto-associative network to learn the mapping for head pose es-
timation on low-resolution images. The method achieved a pre-
cision of 10.3° in the yaw angle and 15.9° in the pitch angle on
the Pointing’04 database. Orozco et al. [8] trained a multi-class
SVM for head pose classification in crowed scenes. The perfor-
mance on videos acquired in crowd public spaces with low res-
olution reached 80% accuracy rate in a four-pose classification. Wu
et al. [15] proposed a two-stage framework for head pose estima-
tion based on a geometrical structure. Peng et al. [16] proposed
a coarse-to-fine pose estimation framework, where the unit cir-
cle and 3-sphere are employed to model the manifold topology
on the coarse and fine layers, respectively. The pose-related and
unrelated factors can be decoupled in a latent instance paramet-
ric subspace. This method achieved much improved performance
in estimation of yaw angle on in-the-wild datasets. Yet, its perfor-
mance for a combination of yaw and pitch is unclear. This method
can achieve superior performance for yaw estimation on in-the-
wild datasets. Multi-class and regression random forest becomes a
popular method for head pose estimation on low resolution images
owing to their robustness. Liu et al. [18] extended random forest by
introducing a Dirichlet-tree distribution.

Structured learning addresses the problem of learning a map-
ping where the input space may be arbitrarily complex [20,21].
Several structured learning approaches have been developed in-
cluding Conditional Random Field [22], Structured Support Vec-
tor Machine [23], and Structured Random forest (SRF) [20,24,25].
Other improved structured learning methods such as Hough forest
[17,26] have been proposed for pose estimation, which introduced
Hough transform for voting. Zhang et al. [17] developed a head
pose estimation based on Hough forests on low-resolution images.

One of the earlier approaches for joint addressing the tasks of
face detection and pose estimation was proposed in [27], which
employs a mixture of trees with a shared pool of parts. Multi-task
learning using CNNs has also been developed [6], which learns five
horizontal head poses to improve landmark localization.

When pose estimation and head detection are processed sepa-
rately, the final pose estimation is inevitably affected by the errors
induced from head detection process. And most of the aforemen-
tioned pose estimation methods rely on accurate head detection.
The obstructed face and excessive background included in the head
region make features extracted for pose estimation error-prone.
Hence, the significant features used for head detection could be
used for pose estimation, which ensure their relevance to human
head and provide an accurate description of pose. In addition, a
diverse set of features offers greater robustness for head detection
and pose estimation when distortions exist, which necessitates the
development of an ensemble architecture.

3. Multi-level structured hybrid forest

Fig. 1 illustratesan overview of our proposed MSHF approach
for joint head detection and pose estimation. Randomly selected
image patches are extracted with multi-structured features and
classified into head patches and background patches, firstly. Then,
the head patches are aggregated into the head contour using the
signed distance of the patch center to the head contour. The ran-
domly selected sub-regions from patches within the head contour
are used to develop a multi-level structured hybrid forest for joint

head pose estimation in a coarse-to-fine manner. Finally, the head
poses are estimated by integrating votes from hybrid classification-
regression trees to achieve a continuous angle.

3.1. Multi-structured features

Multi-structured features are extracted from randomly selected
image patches as shown in Fig. 2. The features are used for head
detection as well as for pose estimation, which ensure their rele-
vance to human head and provide an accurate description of poses.

In each training image, we randomly select a set of patches
Q Q ={q;} and g; = {f;; ¢;, D;, H"}, where f; is the associated im-
age features and ¢;, D;, H" are the labels and annotations. f; =
{ il, fl.z, fl.3}, fl.1 contains the gray values of the neighbor patches,
fi2 represents the Sobel edge descriptors in the horizontal and ver-
tical directions, and ff represents the HOG descriptors extracted
from the patches. {c;, D;, H"} are structural labels and features. ¢
is the label to indicate if the patch is inside a head area. The dis-
tance maps assign a n-dimensional distance vector D; = +|d; — d|,
where d. is the distance from the center of a patch d; to the
closest boundary point d. on the head contour. The negative dis-
tance represents that the patch is outside of the head, while the
positive distance represents that the patch is within the head re-
gion. When a patch is on the head contour, the distance is zero.
H" = {h[*, ¥y p} contains the head pose and angle. The annotation
of hi" in different layers of MSHF follows the scheme in [18], 8y, p
represents the head pose angle in both the horizontal and vertical
directions.

3.2. MSHF construction

The multi-structured features extracted within a head region
allow an ensemble to construct a diverse set of classifiers for a
more robust detection and estimation. In the training of a MSHF,
each tree is constructed using a set of feature patches Q. Fig. 3 il-
lustrates the elements in the training model. The left image of
Fig. 3 shows a tree constructed in the head detection layer, which
is built and selected randomly from a set of the image patch-based
multi-structured features. The right image of Fig. 3 illustrates a tree
constructed in detection-estimation layer, which is grown using
multi-structured features and probabilistic models of head contour
detection. The hybrid probabilistic models in leaves can be seen
under the tree.

To construct a tree in MSHF, a node divides a set of training
patches Q into two subsets Q; and Qg, i.e.,

Q ={ailg <@}, and Q& ={qil¢ > ¢}, (1)
where ¢ is the difference between two patches as follows:
1 . 1 .
== f—7 2 f), (2)
|R1] IRz ]
JjeRy JjeRy
where Ry and R, are arbitrary regions in a patch. | - | gives the size

of a patch, f(j) is the image feature, j denote a pixel. Fig. 4 shows
an example of randomly selected regions in a patch. ¢ is decided
by maximizing the Information Gain (IG) as follows:

|Qs|

¢=argmax | HQ) ~ 3 (51HQ) . (3)
se{L,R}
where % s e {L, R} is the ratio between the number of samples in

Q; (arriving at the left subset), set Qg (arriving at the right subset),
and Q. H(Q) is the entropy of Q.

In order to construct different tree in different layer of the
MSHF, multi-level splitting functions have been used. For the layer
of head detection, the trees classify a patch as part of a head and
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Fig. 4. A training patch with its distance vector (arrow) between the patch’s center
(red dot) and the closest boundary point on the head contour (green dot). R; and
R, are randomly selected regions in a patch. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article).

cast votes into the spaces spanned by head contour locations. The
integrated entropy Hy in head detection trees is computed as fol-
lows:

Hi(@ == [ p(c. D) log p(c. D)dp
=—> p(c)logp(c) (4)
+3 PO /D p(D|c) log p(Dlc)dp)

pDI) o p(c) exp <—'AD') (%)

where p(c) is the probability that the patch belongs to the head
area, p(D|c) represents the probability of the head contour. The fac-
tor A controls the steepness of this function. c labels if the patch
is inside a head area, D is the distance offset vector.

For the layer of pose estimation, our goal is to learn the
head pose probability p(H|c=1,D=0) given the head contour
p(c=1,D=0). A joint detection-estimation tree is trained with
multi-structured features from the neighboring head contour-
patches. We rewrite this multi-level probabilistic distribution as
p(H|c=1,D=0) =p(c=1,D=0)p(h"|h™1)p(@|h™). So to learn
the multi-level distribution within the MSHF, we define the en-
tropy H. in each sub-layer of pose estimation as follows:

Ho(Q) = —hszepm Olc=1.D=0)

logp(h™,8|c=1,D =0)dy
= -Y p(h"|c=1,D=0,A"")

hm

logp(h™|c=1,D=0,h"1) (6)
+> ph™c=1,D=0h"")

hm

(—/p(9|C: 1.D=0,h™)
0
logp(@|c=1,D=0,h™)dy)

where p(h™|c=1,D =0, h™1) is the head pose probability in the
m-th sub-layer of an estimation forest and p(f|c=1,D =0, h™) is
the probability of head rotation angle.

The training continues until the tree reaches the maximum
depth or the number of samples in a node falls below a threshold
and a leaf I is created. A leaf node stores the structured probability
for the patch p(c), the distance to the head contour p(D|c), and the
head pose p(H|c, D).

For a leaf node in a head detection tree, we can simplify
the distributions over multiple structured probabilities by adopt-
ing multivariate adaptive Gaussian mixture models (GMM) [18,28]:
(1) patch class probabilistic distribution p(c|l) = N(c; ¢, Zf), (2)
head contour’s distance distribution p(D|c) = N(D; D, £P). For a
leaf node in a head pose tree, the distributions is modeled
as multivariate GMM: (3) discrete head pose class distribu-
tion p(h™|c.D) = N(h™; hm £™), and (4) continuous head an-
gle distribution p(6|h™) = N(6; 0, £f). In these multivariate GMM,
¢.D.hm, 6 and =f, P, =" %¢ are the mean and covariance of
leaves’ probabilities, respectively.

3.3. Head detection

For head detection in unconstrained environment, the MSHF
classifies the random patches into inside (or on) a head or outside
the head, which are integrated into a head contour. In the proce-
dure of detection, the image patches pass away the trees in a head
detection sub-forest of MSHF. All patches end in a set of leaves of
the sub-forest. In these leaves, the task need to classify a patch as
part of a head and to regress head contour location.

Given a forest F = {F}]_, and a set of patches Q, let py be the
average joint probability of ¢ and D:

T
pr(e.D) = " p(c. Dli(Q)), (7)
t=1

where T is the number of trees in the forest. The most probability
of head contour position D for a patch g; is obtained as follows:

A

D = argmaxp pr(c, D)
= argmaxp pr(c)pr(D|c) (8)
oc arg maxp pr(c)g(q;),

where pg(c|q;) is the head class probability of a patch ¢; and it can
be obtained by averaging the outputs of all trees of the sub-forest.
g(q;) is the regressor for head contour position D at the patch lo-
cation g;:

8(@) Zwsl<(’3‘(",;‘+’)’)>a<z), ©)
1

where

oy |
o) 1 exp( X)oz’

0 otherwise

and K is a Gaussian kernel and the bandwidth parameter h, ws is
the weight of leaf I, and the confident factor o (I) avoids a bias to-
wards an average face configuration. To integrate the votes by dif-
ferent patches, we aggregate them into a Hough image V(g;) and
the hypothesis head contour location:

V(g) =Y pDlc=1). (10)
qi

where ¢ = 1 represents that patches belong to a head area. The lo-

cation of head contour computes the Hough image V and identifies

the most likely locations. Only the head patches around head con-

tours have be used for head pose estimation.

3.4. Pose estimation

In pose estimation, yaw and pitch are estimated from random
patches within the head region. Our idea is to integrate pose es-
timated from a number of randomly selected patches to reach a
continue angle.

Fig. 5 shows an example of cascaded head pose estimation with
the head contour-patches in the horizontal and vertical directions.
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Fig. 5. Our hierarchical head pose estimation scheme.

It includes five cascaded estimations. In L1 sub-layer, three yaw
angles are classified. For refined horizontal estimations in the L2
sub-layer, five yaw angles are classified based on the results of
L1. The procedure of vertical estimations is similar to the hori-
zontal estimations. In the L3 sub-layer, there are three pitch an-
gles under five yaw angles. In the L4 sub-layer, five refined pitch
angles are classified. Finally, in the L5 sub-layer, continuous head
poses are estimated using patches based on the detected head con-
tour, where the weighted neighbor structured aggregation is used
to achieve continuous pose angles in multi-probabilistic model re-
gression. Eqgs. (11)-(13) describe the multi-probabilities of head
poses computed by GMM and weighted neighbor structured aggrega-
tion. Note that this weighted aggregation is a weighted summation
process as shown in Eq. (13).

When head contour patches reach the leaves of the MSHF, pose
probability is computed as follows:

p(H|D) = p(h™, Olm) = p(h™|ln) p(O|N™, ), (11)

where I;; is a leaf in the m-th sub-layer of the head pose forest.

In L1-L4 sub-layers, we simplify the distribution over the dis-
crete head pose class by an adaptive multi-variance Gaussian Mix-
ture Model (GMM):

p(h™ 1) = N(h™: i, 1), (12)

where h™ and E{:ﬂm are the mean and covariance matrix of the con-
textual head pose class.

In the L5 sub-layer, to estimate the head pose angle, a weighted
neighbor structured aggregation method is used. Different from the
conventional random forest, which assigns an class label to each
patch given a test patch gq;, our weighted aggregation makes a pre-
diction by taking into consideration of the neighboring ones. We
randomly select M patches in the neighborhood u and, hence, get
M predictions. The probability of a head pose 6 in a patch is cal-
culated by integrating the estimations in the neighborhood:

1
p@|h™, g;)= ™ ZWSP(GHIm, Gitu)
u

= TV T 2 2= N (0: 6. 2.
u t

where T is the number of the trees t in the L5 sub-layer, & and
219_ are the mean and covariance matrix of pose angles. This pro-
+u

cess is illustrated in Fig. 6. To account for the imbalance of the
training samples, we store the weight ws = P;/P (the ratio of the
number of samples in each subset Ps) and the number of samples
P in each tree.

Neighbour
_’ qi+ll

Center of
Patch ¢;

(a) (b)

Fig. 6. Weighted aggregation for head pose. (a) The patch and neighbor pixels in
the image. (b) Each patch collects class hypotheses from the structured labels pre-
dicted for itself and the neighboring patches. For clarity purpose, only three out of
nine patches are shown.

4. Experimental results
4.1. Datasets and settings

To evaluate our approach, five challenging face datasets were
used: Pointing’04 dataset [29], LFW dataset [30], AFW [27] and
CCNU head pose dataset in the wide classroom [18]. These datasets
were chosen since they contained unconstrained face images with
poses ranging from —90° to +90°. The Pointing’'04 head pose
dataset is a benchmark of 2790 monocular face images of 15 peo-
ple with variations of yaw and pitch angles from —90° to +90°. For
every person, 2 series of 93 images (93 different poses) are avail-
able. The CCNU dataset was collected included an annotated set of
58 people with 75 different head poses from an overhead camera
in the wide scene. The LFW dataset consists of 5749 individual fa-
cial images. The images were collected in the wild, and varied in
poses, lighting conditions, resolutions, races, occlusions, make-ups,
etc. In AFW dataset, images tend to contain cluttered backgrouds
with large variations in both face viewpoint and appearance (ag-
ing, sunglasses, skin color, expression, make-ups etc.).

In these datasets, each face is labeled with a bounding el-
lipse based on 68 landmarks and a discretized viewpoint (—90°
to +90° every 15°) along pitch and yaw directions. Our method
was trained with 2000 images from Pointing’04, 5000 images from
LFW dataset, and 4000 images from CCNU dataset. In evaluation,
we used 500 images from Pointing’04 dataset, 2000 images from
LFW dataset, 478 images from AFW dataset, 1500 images from
CCNU dataset, and real life videos were used. The methods were
implemented using C++, OpenCV library, and Boost library and the
experiments were conducted in a PC with Intel(R) Core(TM) i5-
2400 CPU@ 3.10 GHz, RAM 8 GB.
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Fig. 7. Accuracy of pose estimation (%) and average error of head detection (in pix-
els) with different parameter settings in a MSHF.

4.2. Parameter selection

In training the trees, we adopted bagging for sample selection,
and each tree was trained on a random subset that contains 10% of
the examples. Fig. 7 presents the accuracy of pose estimation and
average error of head detection with respect to four key parame-
ters.

Fig. 7(a) depicts the accuracy and average error with respect to
the number of splitting iterations. It is clear that as the iterations
increased the performance of MSHF in term of both accuracy and
error improved, and it reached a plateau at about 500. Allowing
greater number of splitting iterations makes no further changes.
Hence, we used 500 splitting iterations per node.

Fig. 7(b) depicts the accuracy and average error with respect to
the number of tree depth. The trend was very similar to that of
the number of iterations except that the accuracy of pose estima-
tion reached a plateau quickly. However, considering the error, we
adopted 15 as the maximum depth of trees in the random forests.

Fig. 7(c) depicts the accuracy of pose estimation and average
error of head detection with respect to patch size. There existed a
peak accuracy and a minimum error when the range of patch size
varied from 25 to 30. Hence, it is plausible to take the patch size
of 30 x 30 as a balance to the accuracy and error. Either a small or
a large patch size produced sub-optimal outcomes. Indeed, a small
patch fails to provide an indication for the expected estimation;
whereas a large patch is prone to mistakes due to occlusion and
background noise.

Fig. 7(d) depicts the accuracy of pose estimation and average
error of head detection with respect to the number of trees. As
shown in the plots, 60 trees for head detection and 80 trees for
pose estimation yielded the greatest performance and hence were
used in the rest of our experiments.

4.3. Head contour detection

Fig. 8 illustrates exemplar results of head detection using our
proposed method on AFW, LFW, CCNU, and Pointing’04 datasets,
which include various cases of occlusions, illuminations, resolu-
tions, and make-ups in unconstrained challenging environments.
The ellipses outline the detected heads in the images. Our MSHF
method obtained qualitative results on these challenging datasets.

Fig. 8. Qualitative results of our detector on AFW, LFW, CCNU, and Pointing’04. The
ellipses outline the detected head in the images, which are used for the pose esti-
mation. One can see that our MSHF method can obtain qualitative results on these
challenging datasets.
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Fig. 9. On the AFW dataset we compare our performance with the state-of-the-art
methods including OpenCV frontal+profile Viola-Jones detector [5], Tree-structured
part models (TSPM) [27], structured random forests (SRF) [25], convolutional neural
networks (CNN) [7], DMP [12] and face.com.

In order to evaluate head detection results of our methods, we
compare the method with OpenCV frontal+profile Viola-Jones de-
tector [5], Tree-structured part models (TSPM) [27], structured ran-
dom forests (SRF) [25], CNN [7], DMP [12] and face.com detector
on AFW dataset. We adopt the PASCAL VOC precision-recall pro-
tocol for face detection (requiring 50% overlap). Evaluation results
on AFW dataset are summarized in Fig. 9. Our method outperform
Viola-Jones, TSPM, DMP and SRF significantly and are only slightly
below CNN. The CNN model needs more training images and GPU
supporting, while our MSHF can achieve the similar performance
in CPU instead of GPU. Noted that our performance is similar to
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Table 1

Average MSD in head delineation using different methods.
Methods LFW Pointing'04  CCNU AFW
Viola-Jones [5] 775 (6.2) 584 (5.6) 703 (7.1) 80.4 (6.4)
SRF [25] 614 (40) 472 (3.3) 545 (48) 723 (5.2)
MSHF 39.7 (23) 36.5(15) 38.6(29) 55.3(4.9)

Fig. 10. Examples of pose estimation using the CCNU, LFW, Pointing’04, AFW
datasets and a video (the right bottom one). Our MSHF method can obtain qual-
itative results on these challenging datasets with non-visible faces, illuminations,
resolutions, poses, occlusions, expressions and make-ups, etc.

Table 2
Accuracy (%) and average errors (degrees) of MSHF method.

Datasets Yaw Pitch  Yaw+Pitch  Ave. error  STD
Pointing’04 923  90.7 84.0 6.6 35
LFW+AFW 85.6 803 70.4 11.6 5.9
CCNU 838 864 74.2 124 6.7

the performance of commercial face.com detector without needing
hundred million of training images.

To gain a quantitative understanding of the delineation error
of head contour regression, we adopted the mean surface distance
(MSD) [24]:

D=3 [dxy) —dxy|, (14)
Xy

where d(x, y) is a point on the detected head boundary and d(x, y)
is a nearest point on the reference head boundary. MSD com-
putes the cumulative distance of the head contour to the refer-
ence. We also compared our method with among detected head
contour methods. Table 1 presents the average MSD and STD. on
the four datasets by using the three methods. The unit of error is
pixel. With the four datasets, MSHF consistently outperforms both
Viola-Jones detector [5] and SRF [25] in head delineation with
much smaller MSD as well as a smaller standard deviation. MSRF
reduced the MSD by approximately 30% with respect to SRF. It is
evidential that MSRF yielded more accurate head detection results.

4.4. Accuracy of pose estimation

Fig. 10 depicts examples of head pose estimation results on
CCNU, LFW, Pointing’04, AFW datasets and real-life videos. The el-
lipses enclose the detected head within the images. The estimated
head pose angles are written above the ellipses, where the left
is the yaw angle and the right is the pitch angle. Additionally,
Fig. 10 shows some example of pose estimation in a real-life video
of a crowd. One can see that our MSHF method can obtain qualita-
tive results on these challenging datasets with various non-visible

Table 3
Accuracy (%) and average error (in degrees) using different methods
on Pointing’04 dataset.

Methods Yaw Pitch Yaw+Pitch  Ave. error  STD
MLD [31] 8430 8624 723 719 4.9
D-RF [18] 83.52 8694 7183 134 5.5
HF [32] 823 84.86  70.54 13.7 52
M-SVM [8]  80.6 82.5 60.46 20.2 5.7
M-RF [19] 78.4 68.73  62.23 26.3 84
NN[14] 79.5 7036  56.7 29 75
MSHF 92.3 90.7 84.0 6.6 35

Table 4
Accuracy (%) and average error (in degrees) using different methods on
AFW and LFW datasets.

Methods Yaw Pitch Yaw+Pitch  Ave. error  STD
AVM [33] 80.56 7475  58.33 172 -
D-RF [18] 80.8 774 58.9 13.5 7.3
Embedding [34] 72.5 60.13  43.38 28.15 -
TSPM of [27] 81.0 - - 15.3 -
MSHF 85.6 80.3 65.65 11.6 5.9
Table 5
Computation time comparison ( per second).
Method ~MSHF  D-RF[18] HF[32] M-RF[19] Viola-Jones+SVM
Mean 0.4357  0.98995 1.06547  1.36859 1.0446
STD. 0.11 0.15 0.19 0.18 0.13
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Fig. 11. Average errors at different sub-layers of the MSHF.

faces, poses, illuminations, resolutions, occlusions, expressions and
make-ups, etc.

Table 2 lists the accuracy with respect to the yaw and pitch ro-
tations of our MSHF method as well as the average error in terms
of degrees. A 4-fold cross-validation was conducted. Among the
four datasets, our method achieved the greatest performance with
Pointing’04 dataset. The accuracy in yaw and pitch angles were in
the range of 80% to 90%, respectively. Note that LFW, AFW and
CCNU datasets consist of great variation of poses, lighting, occlu-
sions, etc. For these three more challenging datasets, the accuracy
was also above 80% for yaw rotation and above 70% for pitch rota-
tion. The average error reached 6.6° for the Pointing’04 and those
of the other two were close to 10%. In all cases, the standard devi-
ation of the average error was fairly low.

In our method, a multi-level hybrid forests based on multi-
structured features is used and refined estimations of head pose
are produced within this hierarchical structure. Fig. 11 shows the
average errors at different sub-layers of the MSHF for pose esti-
mation. The starting point where the MSHF sub-layer is zero in-
dicates that a conventional random forest was used to make an
estimation of the head pose. The average error of this conven-
tional RF was 26.3°. The MSHF sub-layers of 1 through 4 give the
intermediate estimations and the MSHF sub-layer 5 gives the fi-
nal pose estimation. As shown in Fig. 11, as the analysis traced
through the random forests, the pose was refined to be much more
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accurate. The final average estimation error was 7.9° as the result
of the 5th sub-layer in the MSHF. This indicates that with multi-
level hybrid forests improved the estimation accuracy. In theory,
additional sub-layers of MSHF could further improve the accu-
racy; however, in practice the complexity in training such random
forests and overfitting issue make more sub-layers a less favorable
choice.

In comparison with the state-of-the-art head pose estimation
methods, we conducted experiments using the Dirichilet-tree en-
hanced random forest (D-RF) [18], Multivariate label distribution
(MLD) [31], Hough forest (HF) [32], multi-class random forest (M-
RF) [19], multi-class SVM (M-SVM) [8], and neural networks (NN)
[14] on Pointing’04 head pose dataset. The same training and test-
ing datasets were used, and we employed a 4-fold cross-validation.
Table 3 lists the average accuracy and error across using these
methods. MLD [31], D-RF [18] and HF [32] yielded comparable re-
sults with an accuracy of approximately 70% in yaw and pitch ro-
tations. MLD [31] proposed to associate a multivariate label distri-
bution to each image for head pose estimation in yaw and pitch
rotation. D-RF [18] proposed a dirichlet-tree distribution enhanced
random forest to 25 class head pose estimation. HF [32] improved
random forests with Hough voting for real-time head pose esti-
mation. M-SVM [8], M-RF [19], and NN [14] produced similar ac-
curacy in the range of 60%. MSHF exhibited the highest accuracy
of 84% and the accuracy of the estimation of the yaw component
reached 92.3%. The multi-structured features from head contour-
patches and a weighted neighbor aggregation method removes the
unwanted patches from face deformation and large rotation an-
gle in unbalanced sample sets, which ensures improved accuracy
in our proposed method. The improvement with respect to the
second best (MLD [31]) is about 9%. We get the same observa-
tion from the average estimation error. The average error of MSHF
method was 7.9°. In addition, the standard deviation of MSHF indi-
cates that MSHF achieved the greatest consistency with a smallest
STD. It is evidential that our MSHF improved the head pose esti-
mation with great robustness.

Table 4 lists the average accuracy and error across on more
challenging AFW and LFW datasets using AVM [33], D-RF [18],
Feature-embedding [34], TSPM [27] and our MSHF. AVM [33] pro-
posed features-based manifold embedding for head pose estima-
tion in unconstrained environments. The average accuracy reached
to 58.33% within 15° in horizontal and vertical direction estima-
tions. TSPM of [27] presented a unified the mixture tree-structured
part model for face detection, pose estimation, and landmark es-
timation in real-word and wild images. The TSPM method only
estimated head poses in the horizontal direction with an average
accuracy of 81%, while our proposed method can estimate head
contour and head poses in horizontal and vertical directions.
Feature-embedding [34] proposed a feature embedding based re-
gression function method and achieve the average accuracy of
43.38% in the challenging datasets. The compared results can be
shown in Table 4. Our MSHF method outperforms other methods
with an average accuracy of 65.65% and average error of 11.6° in
the horizontal and vertical estimation on the challenging datasets.

4.5. Analysis of different image features and head detectors with
respect to neighborhood patches

In our method, various image features can be used as input
for training of a MSHF. It is to our interest to study the impact
of image features to the estimation accuracy. However, the cover-
age of image patches is an integral factor and cannot be separated
from the employment of image features. To understand the effects
of features and patch coverage, we conducted experiments with
four features including multi-structured features, LBPH, Gabor filter
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Fig. 12. Accuracy of MSHF using various image features with respect to the number
of neighborhood patches.
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Fig. 13. Using different head detectors with respect to the number of neighborhood
patches.

bank with eight different rotations and five different phase shifts,
and gray values of raw input image.

Fig. 12 illustrates the curve of average error of pose estima-
tion using different image features with respect to the number of
neighborhood patches. The horizontal axis is the number of neigh-
borhood patches in the textbfweighted neighbor aggregation; the
vertical axis is the average error of pose estimation. As shown in
the plot, estimation error of head pose decreases with the incre-
ment of the number of neighborhood patches regardless of the
image feature used. The decrement gradually reached a plateau
and any further increment of number of patches had little im-
pact to the error. Such elbow point is about 7 for all cases. Among
the four features, our proposed multi-structured features extracted
from head contour-patches consistently performed better than the
others did. Gray value exhibited the highest error. Meanwhile, one
can see the number of neighborhood patches 9 is a good choice in
our experiments.

In order to evaluate our joint detection-estimation method,
we compared the average head pose error with different head
detectors with respect to the number of neighborhood patches.
We compared our MSHF detector with the following: (1) OpenCV
frontal+profile Viola-Jones detector [5], (2) Tree-structured part
models (TSPM) of [27], (3) Structured random forests (SRF) of [25].
As shown in Fig. 13, our proposed MSHF demonstrated a significant
advantage to other methods when different number of patches
were used. Our MSHF method all outperformed other methods
for joint head pose estimation due to declining the influence of
head detection by the joint detection-estimation method. It is in-
teresting to note that the error of using head-contour patches from



214 Y. Liu et al./ Neurocomputing 266 (2017) 206-215

Viola-Jones head detector is less influenced by the number of
patches. It is proved the benefit of our proposed joint detection-
estimation method.

4.6. Analysis of time complexity

Table 5 reports the average computational time of five meth-
ods on AFW dataset. The methods were implemented using C++,
OpenCV library, and Boost library and the experiments were con-
ducted in a PC with Intel(R) Core(TM) i5-2400 CPU@ 3.10 GHz,
RAM 8 GB. It can be seen that all methods are fairly efficient in
processing the test images. MSHF yielded an average of 0.4357 s,
whereas the others are about 1 s or above. The standard deviation
of the computational time of MSHF is also the minimum among
all. It is evident that MSHF is more efficient; the reduction with
respect to D-RF (the second most efficient method) is about 56%.

5. Conclusion

This paper describes a multi-level structured hybrid forest
(MSHF) for joint head detection and pose estimation. The MSHF
extends random forest to integrate classification-regression forests
by introducing multi-level splitting function and multi-structural
features to achieve a joint head detection and pose estimation.
Multi-level splitting functions are used to construct different tree
in different layer of MSHF. Multi-structured features are extracted
from randomly selected image patches and head contour is derived
using the signed distance of the patch center to the head contour.
The randomly selected sub-regions from these patches are used
to construct a multi-level structured random forest. The weighted
neighbor structured aggregation is introduced to the MSHF by inte-
grating discrete votes from hybrid trees to achieve continuous pose
angles in horizontal and vertical directions. Our proposed MSHF
can do head region location, head contour detection, head pose
classification, and continuous head angle estimation in a joint way.

Experiments were conducted using public challenging datasets
and video streams. Our experimental results demonstrated that
among the four image features adopted in our experiments, multi-
structured features extracted from head contour-patches consis-
tently outperformed the others. In comparison to the state-of-the-
art methods, MSHF yielded more accurate head contour detection
results. The averaged time for performing a joint head detection
and pose estimation using neighborhood multi-structured feature
around head contour is about 0.44 s. Our method achieved the
greatest performance with an average accuracy of 90% and the av-
erage error of 6.6°. The standard deviation of the average error was
fairly low. It is evidential that our MSHF improved the head pose
estimation with great robustness. In future, we plan to investigate
on-line learning methods to achieve real-time estimation by inte-
grating head movement tracking.
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