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a b s t r a c t 

In real-world applications, factors such as illumination variation, occlusion, and poor image quality, etc. 

make head detection and pose estimation much more challenging. In this paper, we propose a multi-level 

structured hybrid forest (MSHF) for joint head detection and pose estimation. Our method extends the 

hybrid framework of classification and regression forests by introducing multi-level splitting functions 

and multi-structural features. Multi-level splitting functions are used to construct trees in different layers 

of MSHF. Multi-structured features are extracted from randomly selected image patches, which are either 

head region or the background. The head contour is derived from these patches using the signed distance 

of the patch center to the head contour by MSHF regression. The randomly selected sub-regions from the 

patches within the head contour are used to develop the MSHF for head pose estimation in a coarse-to- 

fine manner. The weighted neighbor structured aggregation integrates votes from trees to achieve an esti- 

mation of continuous pose angles. Experiments were conducted using public datasets and video streams. 

Compared to the state-of-the-art methods, MSHF achieved improved performance and great robustness 

with an average accuracy of 90% and the average angular error of 6.6 °. The averaged time for performing 

a joint head detection and pose estimation is about 0.44 s. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Head detection and pose estimation are the key steps in many

computer vision applications, such as human computer interac-

tion (HCI), intelligent robotics, face recognition, and recognition

of visual focus of attention [1–3] . The former locates the position

of a face, and the latter estimates the three dimensional rotation

angles of the head according to the orientation of the face. The

existing techniques achieve satisfactory results in well-designed

environments. Head detection 

1 and pose estimation have been ap-

proached as separate problems, and various techniques were devel-

oped, such as scanning window classifiers, view-based eigenspace

methods, and elastic graph models, etc. [4] . Head detection has

been dominated by scanning window classifiers, among which is
� Fully documented templates are available in the elsarticle package on CTAN. 
∗ Corresponding author. 

E-mail addresses: liuyy@cug.edu.cn (Y. Liu), xiezhong@cug.edu.cn (Z. Xie), 

xiaohui.yuan@unt.edu , xyuan@cse.unt.edu (X. Yuan), chenjy@email.ccnu.edu.cn (J. 

Chen), songwu@mails.ccnu.edu.cn (W. Song). 
1 Head location, face detection, and head contour detection are terms frequently 

used in the applications that require to locate the human face. In this paper, we use 

these terms interchangeably. 
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iola and Jones face detector [5] . Recently, Convolutional Neural

etworks (CNNs) have been applied to profile head detection and

chieved improved results [6,7] . In real-world applications, how-

ver, factors, such as illumination variation, occlusion, poor image

uality, etc., make the detection and pose estimation much more

hallenging [8,9] . Yet, its performance decreases from distortions

nd side-views of head pose, such as bowing the head and looking

o the side, because most methods assume accurate head detec-

ion that shows a front or near-front view. Errors in head detec-

ion negatively impact pose estimation [6] . Hence, we propose a

ulti-level structured hybrid forest (MSHF) with multi-structured

eatures for joint head detection and pose estimation. The MSHF is

n ensemble learning model that aggregates multi-structured fea-

ures extracted from randomly selected image patches. The multi-

tructured features extracted for head detection ensure the rele-

ance to human head and, hence, provide an accurate description

f the head pose. The many patches extracted within a head re-

ion allow ensemble to construct a diverse set of classifiers for a

ore robust detection and estimation that circumvents the afore-

entioned distortions. 

This paper presents a MSHF approach for joint head detection

nd pose estimation that extends a framework of classification and

http://dx.doi.org/10.1016/j.neucom.2017.05.033
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2017.05.033&domain=pdf
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Fig. 1. The flowchart of our MSHF method. Multi-structured features are extracted from randomly selected image patches, which are either head region or the background, 

firstly. Then, the head contour ˆ D is derived from these patches using the signed distance of the patch center to the head contour by MSHF regression. The randomly selected 

sub-regions from the patches within the head contour are used to develop the MSHF for head pose estimation in a coarse-to-fine manner, as shown L1 to L4 layer in the 

figure. In the L5 layer, the weighted neighbor structured aggregation integrates votes from trees to achieve an estimation of continuous pose angles θ Yaw, Pitch . 

Fig. 2. Multi-structured features. (a) Intensity, Sobel edges and HOG features, (b) la- 

bels and each colored patch belong to a distinct class, (c) a set of multi-structured 

features q i = { f i ; c i , D i , H 
m 
i 
} that randomly sampled from the image, where H m 

i 
= 

{ 2 , 1 , ( 60 ◦, 45 ◦) } represent that the head pose class labels (2, 1) in horizontal and 

vertical directions and the angles are (60 °, 45 °). (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this arti- 

cle). 

Fig. 3. The MSHF training model in head detection and pose estimation. The left 

image shows a tree constructed in the head detection layer, and the right image 

illustrates a tree constructed in detection-estimation layer. 
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egression forests by introducing multi-level splitting functions and

ulti-structural features to achieve a joint head detection and pose

stimation. Multi-level splitting functions are used to construct

rees in different layers of MSHF and the overall architecture is

hown in Fig. 1 . Multi-structured features are extracted from the

andomly selected image patches, which ensure that these features

re highly relevant to human head and, hence, provide an accurate
escription of the head pose. The identified head patches are ag-

regated into a head contour using sign distance with respect to

he head contour. The randomly selected sub-regions within a head

ontour are used to develop a MSHF in a coarse-to-fine manner.

he ensemble aggregates local features for head detection, which

re used for pose estimation. The head pose is estimated by in-

egrating weighted votes from the hybrid classification-regression

rees, which achieves a continuous angle. The many patches ex-

racted within a head region allow ensemble to construct a diverse

et of classifiers for a more robust detection and estimation. 

Our contributions include the following: 

1. A multi-level structured hybrid forest method is proposed for

joint head detection (including head location and contour de-

tection) and continuous head pose estimation (including pose

classification and regression) in unconstrained challenging en-

vironments. 

2. Continuous head poses are decided using patches based on the

detected head contour, where the weighted neighbor structured

aggregation is used to achieve continuous pose angles in multi-

probabilistic model regression. 

3. The MSHF detects head region (a classification process) and

obtains contour location (a regression process), which delivers

more accurate head contour detection by suppressing errors in

head pose estimation. 

The rest of this paper is organized as follows: Section 2 re-

iews the related work on head detection and pose estimation.

ection 3 presents our multi-level structured hybrid forest method.

ection 4 discusses the experimental results using publicly avail-

ble data sets and our data sets. Section 5 concludes this paper

ith a summary of our method. 

. Related work 

Many methods have been proposed for head detection and pose

stimation as separate problems. We refer the readers to the re-

ent surveys [1,10] and the references therein. For head detection,

 widely used method is Adaboost classifiers with Haar-like fea-

ures [11] , a popular method of which is the Viola Jones face de-

ector [5] . Deformable Parts Model (DPM) [12] based face detection

ethods have also been proposed in the literature, where a face is

efined as a collection of parts. It is shown that in unconstrained

nvironments, partially visible face detection is still a challenging

roblem. Yet, far distance, various illuminations, occlusion, low im-

ge resolution, expression, and make-up degrade its performance.

ecently, Deep Convolutional Neural Networks (DNNs) is applied

or head detection [6,7,13] , which achieved improved performance

n cases such as multi-view occlusion and low image resolution.
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The improvement, however, heavily relies on the large number of

training sets and high performance computing power. 

Head pose estimation is usually achieved using template match-

ing, subspace embedding, and tracking methods [1] . Methods, such

as neural networks (NN) [14] , support vector machines (SVM) [8] ,

nearest prototype matching [15] , manifold embedding [16] and

random forest [17–19] , have gained popularity for head pose es-

timation in natural environment. Gourier et al. [14] applied an

auto-associative network to learn the mapping for head pose es-

timation on low-resolution images. The method achieved a pre-

cision of 10.3 ° in the yaw angle and 15.9 ° in the pitch angle on

the Pointing’04 database. Orozco et al. [8] trained a multi-class

SVM for head pose classification in crowed scenes. The perfor-

mance on videos acquired in crowd public spaces with low res-

olution reached 80% accuracy rate in a four-pose classification. Wu

et al. [15] proposed a two-stage framework for head pose estima-

tion based on a geometrical structure. Peng et al. [16] proposed

a coarse-to-fine pose estimation framework, where the unit cir-

cle and 3-sphere are employed to model the manifold topology

on the coarse and fine layers, respectively. The pose-related and

unrelated factors can be decoupled in a latent instance paramet-

ric subspace. This method achieved much improved performance

in estimation of yaw angle on in-the-wild datasets. Yet, its perfor-

mance for a combination of yaw and pitch is unclear. This method

can achieve superior performance for yaw estimation on in-the-

wild datasets. Multi-class and regression random forest becomes a

popular method for head pose estimation on low resolution images

owing to their robustness. Liu et al. [18] extended random forest by

introducing a Dirichlet-tree distribution. 

Structured learning addresses the problem of learning a map-

ping where the input space may be arbitrarily complex [20,21] .

Several structured learning approaches have been developed in-

cluding Conditional Random Field [22] , Structured Support Vec-

tor Machine [23] , and Structured Random forest (SRF) [20,24,25] .

Other improved structured learning methods such as Hough forest

[17,26] have been proposed for pose estimation, which introduced

Hough transform for voting. Zhang et al. [17] developed a head

pose estimation based on Hough forests on low-resolution images.

One of the earlier approaches for joint addressing the tasks of

face detection and pose estimation was proposed in [27] , which

employs a mixture of trees with a shared pool of parts. Multi-task

learning using CNNs has also been developed [6] , which learns five

horizontal head poses to improve landmark localization. 

When pose estimation and head detection are processed sepa-

rately, the final pose estimation is inevitably affected by the errors

induced from head detection process. And most of the aforemen-

tioned pose estimation methods rely on accurate head detection.

The obstructed face and excessive background included in the head

region make features extracted for pose estimation error-prone.

Hence, the significant features used for head detection could be

used for pose estimation, which ensure their relevance to human

head and provide an accurate description of pose. In addition, a

diverse set of features offers greater robustness for head detection

and pose estimation when distortions exist, which necessitates the

development of an ensemble architecture. 

3. Multi-level structured hybrid forest 

Fig. 1 illustratesan overview of our proposed MSHF approach

for joint head detection and pose estimation. Randomly selected

image patches are extracted with multi-structured features and

classified into head patches and background patches, firstly. Then,

the head patches are aggregated into the head contour using the

signed distance of the patch center to the head contour. The ran-

domly selected sub-regions from patches within the head contour

are used to develop a multi-level structured hybrid forest for joint
ead pose estimation in a coarse-to-fine manner. Finally, the head

oses are estimated by integrating votes from hybrid classification-

egression trees to achieve a continuous angle. 

.1. Multi-structured features 

Multi-structured features are extracted from randomly selected

mage patches as shown in Fig. 2 . The features are used for head

etection as well as for pose estimation, which ensure their rele-

ance to human head and provide an accurate description of poses.

In each training image, we randomly select a set of patches

 , Q = { q i } and q i = { f i ; c i , D i , H 

m 

i 
} , where f i is the associated im-

ge features and c i , D i , H 

m 

i 
are the labels and annotations. f i =

 f 1 
i 
, f 2 

i 
, f 3 

i 
} , f 1 

i 
contains the gray values of the neighbor patches,

f 2 
i 

represents the Sobel edge descriptors in the horizontal and ver-

ical directions, and f 3 
i 

represents the HOG descriptors extracted

rom the patches. { c i , D i , H 

m 

i 
} are structural labels and features. c i 

s the label to indicate if the patch is inside a head area. The dis-

ance maps assign a n-dimensional distance vector D i = ±| d i − d c | ,
here d c is the distance from the center of a patch d i to the

losest boundary point d c on the head contour. The negative dis-

ance represents that the patch is outside of the head, while the

ositive distance represents that the patch is within the head re-

ion. When a patch is on the head contour, the distance is zero.

 

m 

i 
= { h m 

i 
, ϑ y,p } contains the head pose and angle. The annotation

f h m 

i 
in different layers of MSHF follows the scheme in [18] , ϑy, p 

epresents the head pose angle in both the horizontal and vertical

irections. 

.2. MSHF construction 

The multi-structured features extracted within a head region

llow an ensemble to construct a diverse set of classifiers for a

ore robust detection and estimation. In the training of a MSHF,

ach tree is constructed using a set of feature patches Q . Fig. 3 il-

ustrates the elements in the training model. The left image of

ig. 3 shows a tree constructed in the head detection layer, which

s built and selected randomly from a set of the image patch-based

ulti-structured features. The right image of Fig. 3 illustrates a tree

onstructed in detection-estimation layer, which is grown using

ulti-structured features and probabilistic models of head contour

etection. The hybrid probabilistic models in leaves can be seen

nder the tree. 

To construct a tree in MSHF, a node divides a set of training

atches Q into two subsets Q L and Q R , i.e., 

 L = { q i | ϕ < ˜ ϕ } , and Q R = { q i | ϕ > ˜ ϕ } , (1)

here ϕ is the difference between two patches as follows: 

 = 

1 

| R 1 | 
∑ 

j∈ R 1 
f ( j) − 1 

| R 2 | 
∑ 

j∈ R 2 
f ( j) , (2)

here R 1 and R 2 are arbitrary regions in a patch. | · | gives the size

f a patch, f ( j ) is the image feature, j denote a pixel. Fig. 4 shows

n example of randomly selected regions in a patch. ˜ ϕ is decided

y maximizing the Information Gain (IG) as follows: 

˜  = arg max 
ϕ 

[ 

H(Q ) −
∑ 

s ∈{ L,R } 

| Q s | 
| Q| H(Q s ) 

] 

, (3)

here | Q s | 
| Q| , s ∈ { L, R } is the ratio between the number of samples in

 L (arriving at the left subset), set Q R (arriving at the right subset),

nd Q. H ( Q ) is the entropy of Q . 

In order to construct different tree in different layer of the

SHF, multi-level splitting functions have been used. For the layer

f head detection, the trees classify a patch as part of a head and
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Fig. 4. A training patch with its distance vector (arrow) between the patch’s center 

(red dot) and the closest boundary point on the head contour (green dot). R 1 and 

R 2 are randomly selected regions in a patch. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article). 
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t  
ast votes into the spaces spanned by head contour locations. The

ntegrated entropy H d in head detection trees is computed as fol-

ows: 

H d (Q ) = −
∑ 

c 

∫ 
D 

p(c, D ) log p(c, D ) d D 

= −
∑ 

c 

p(c) log p(c) 

+ 

∑ 

c 

p(c)(−
∫ 

D 

p(D | c) log p(D | c) d D ) 

(4) 

p(D | c) ∝ p(c) exp 

(
−| D | 

λ

)
, (5)

here p ( c ) is the probability that the patch belongs to the head

rea, p ( D | c ) represents the probability of the head contour. The fac-

or λ controls the steepness of this function. c labels if the patch

s inside a head area, D is the distance offset vector. 

For the layer of pose estimation, our goal is to learn the

ead pose probability p(H| c = 1 , D = 0) given the head contour

p(c = 1 , D = 0) . A joint detection-estimation tree is trained with

ulti-structured features from the neighboring head contour-

atches. We rewrite this multi-level probabilistic distribution as

p(H| c = 1 , D = 0) = p(c = 1 , D = 0) p(h m | h m −1 ) p(θ | h m ) . So to learn

he multi-level distribution within the MSHF, we define the en-

ropy H e in each sub-layer of pose estimation as follows: 

H e (Q ) = −
∑ 

h m 

∫ 
θ

p(h 

m , θ | c = 1 , D = 0) 

log p(h 

m , θ | c = 1 , D = 0) d θ

= −
∑ 

h m 

p(h 

m | c = 1 , D = 0 , h 

m −1 ) 

log p(h 

m | c = 1 , D = 0 , h 

m −1 ) 

+ 

∑ 

h m 

p(h 

m | c = 1 , D = 0 , h 

m −1 ) 

(−
∫ 
θ

p(θ | c = 1 , D = 0 , h 

m ) 

log p(θ | c = 1 , D = 0 , h 

m ) d θ ) 

(6) 

here p(h m | c = 1 , D = 0 , h m −1 ) is the head pose probability in the

 -th sub-layer of an estimation forest and p(θ | c = 1 , D = 0 , h m ) is

he probability of head rotation angle. 

The training continues until the tree reaches the maximum

epth or the number of samples in a node falls below a threshold

nd a leaf l is created. A leaf node stores the structured probability

or the patch p ( c ), the distance to the head contour p ( D | c ), and the

ead pose p ( H | c, D ). 
For a leaf node in a head detection tree, we can simplify

he distributions over multiple structured probabilities by adopt-

ng multivariate adaptive Gaussian mixture models (GMM) [18,28] :

1) patch class probabilistic distribution p(c| l) = N(c; c , �c 
l 
) , (2)

ead contour’s distance distribution p(D | c) = N(D ; D , �D 
l 
) . For a

eaf node in a head pose tree, the distributions is modeled

s multivariate GMM: (3) discrete head pose class distribu-

ion p( h m | c, D ) = N( h m ; h m , �h m 

l 
) , and (4) continuous head an-

le distribution p(θ | h m ) = N(θ ; θ, �θ
l 
) . In these multivariate GMM,

 , D , h m , θ and �c 
l 
, �D 

l 
, �h m 

l 
, �θ

l 
are the mean and covariance of

eaves’ probabilities, respectively. 

.3. Head detection 

For head detection in unconstrained environment, the MSHF

lassifies the random patches into inside (or on) a head or outside

he head, which are integrated into a head contour. In the proce-

ure of detection, the image patches pass away the trees in a head

etection sub-forest of MSHF. All patches end in a set of leaves of

he sub-forest. In these leaves, the task need to classify a patch as

art of a head and to regress head contour location. 

Given a forest F = { F t } T t=1 
and a set of patches Q , let p F be the

verage joint probability of c and D : 

p F (c, D ) = 

1 

T 

T ∑ 

t=1 

p(c, D | l t (Q )) , (7) 

here T is the number of trees in the forest. The most probability

f head contour position 

ˆ D for a patch q i is obtained as follows: 

ˆ D = arg max D p F (c, D ) 
= arg max D p F (c) p F (D | c) 
∝ arg max D p F (c) g(q i ) , 

(8) 

here p F ( c | q i ) is the head class probability of a patch q i and it can

e obtained by averaging the outputs of all trees of the sub-forest.

 ( q i ) is the regressor for head contour position D at the patch lo-

ation q i : 

(q i ) ∝ 

∑ 

l 

w s K 

(
D − (q i + D̄ l ) 

h 

)
σ (l) , (9)

here 

(l) = 

⎧ ⎨ 

⎩ 

1 exp 

(
−| D | 

λ

)
≥ α

0 otherwise 

, 

nd K is a Gaussian kernel and the bandwidth parameter h, w s is

he weight of leaf l , and the confident factor σ ( l ) avoids a bias to-

ards an average face configuration. To integrate the votes by dif-

erent patches, we aggregate them into a Hough image V ( q i ) and

he hypothesis head contour location: 

 (q i ) = 

∑ 

q i 

p(D | c = 1) , (10)

here c = 1 represents that patches belong to a head area. The lo-

ation of head contour computes the Hough image V and identifies

he most likely locations. Only the head patches around head con-

ours have be used for head pose estimation. 

.4. Pose estimation 

In pose estimation, yaw and pitch are estimated from random

atches within the head region. Our idea is to integrate pose es-

imated from a number of randomly selected patches to reach a

ontinue angle. 

Fig. 5 shows an example of cascaded head pose estimation with

he head contour-patches in the horizontal and vertical directions.
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Fig. 5. Our hierarchical head pose estimation scheme. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Weighted aggregation for head pose. (a) The patch and neighbor pixels in 

the image. (b) Each patch collects class hypotheses from the structured labels pre- 

dicted for itself and the neighboring patches. For clarity purpose, only three out of 

nine patches are shown. 
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2

It includes five cascaded estimations. In L1 sub-layer, three yaw

angles are classified. For refined horizontal estimations in the L2

sub-layer, five yaw angles are classified based on the results of

L1. The procedure of vertical estimations is similar to the hori-

zontal estimations. In the L3 sub-layer, there are three pitch an-

gles under five yaw angles. In the L4 sub-layer, five refined pitch

angles are classified. Finally, in the L5 sub-layer, continuous head

poses are estimated using patches based on the detected head con-

tour, where the weighted neighbor structured aggregation is used

to achieve continuous pose angles in multi-probabilistic model re-

gression. Eqs. (11) –(13) describe the multi-probabilities of head

poses computed by GMM and weighted neighbor structured aggrega-

tion . Note that this weighted aggregation is a weighted summation

process as shown in Eq. (13) . 

When head contour patches reach the leaves of the MSHF, pose

probability is computed as follows: 

p(H| l) = p( h 

m , θ | l m 

) = p( h 

m | l m 

) p(θ | h 

m , l m 

) , (11)

where l m 

is a leaf in the m -th sub-layer of the head pose forest. 

In L1–L4 sub-layers, we simplify the distribution over the dis-

crete head pose class by an adaptive multi-variance Gaussian Mix-

ture Model (GMM): 

p( h 

m | l m 

) = N 

(
h 

m ; h 

m , �h m 

l m 

)
, (12)

where h̄ m and �h m 

l m 
are the mean and covariance matrix of the con-

textual head pose class. 

In the L5 sub-layer, to estimate the head pose angle, a weighted

neighbor structured aggregation method is used. Different from the

conventional random forest, which assigns an class label to each

patch given a test patch q i , our weighted aggregation makes a pre-

diction by taking into consideration of the neighboring ones. We

randomly select M patches in the neighborhood u and, hence, get

M predictions. The probability of a head pose θ in a patch is cal-

culated by integrating the estimations in the neighborhood: 

p(θ | h 

m , q i ) = 

1 

| M| 
∑ 

u 

w s p(θ | h 

m , q i + u ) 

= 

1 

| M| 
1 

| T | 
∑ 

u 

∑ 

t 

w s N(θ ; θ, �θ
l i + u 

) , 

(13)

where T is the number of the trees t in the L5 sub-layer, θ and

�θ
l i + u 

are the mean and covariance matrix of pose angles. This pro-

cess is illustrated in Fig. 6 . To account for the imbalance of the

training samples, we store the weight w s = P s /P (the ratio of the

number of samples in each subset P s ) and the number of samples

P in each tree. 
. Experimental results 

.1. Datasets and settings 

To evaluate our approach, five challenging face datasets were

sed: Pointing’04 dataset [29] , LFW dataset [30] , AFW [27] and

CNU head pose dataset in the wide classroom [18] . These datasets

ere chosen since they contained unconstrained face images with

oses ranging from −90 ◦ to +90 °. The Pointing’04 head pose

ataset is a benchmark of 2790 monocular face images of 15 peo-

le with variations of yaw and pitch angles from −90 ◦ to +90 °. For

very person, 2 series of 93 images (93 different poses) are avail-

ble. The CCNU dataset was collected included an annotated set of

8 people with 75 different head poses from an overhead camera

n the wide scene. The LFW dataset consists of 5749 individual fa-

ial images. The images were collected in the wild, and varied in

oses, lighting conditions, resolutions, races, occlusions, make-ups,

tc. In AFW dataset, images tend to contain cluttered backgrouds

ith large variations in both face viewpoint and appearance (ag-

ng, sunglasses, skin color, expression, make-ups etc.). 

In these datasets, each face is labeled with a bounding el-

ipse based on 68 landmarks and a discretized viewpoint ( −90 ◦

o +90 ° every 15 °) along pitch and yaw directions. Our method

as trained with 20 0 0 images from Pointing’04, 50 0 0 images from

FW dataset, and 40 0 0 images from CCNU dataset. In evaluation,

e used 500 images from Pointing’04 dataset, 20 0 0 images from

FW dataset, 478 images from AFW dataset, 1500 images from

CNU dataset, and real life videos were used. The methods were

mplemented using C++, OpenCV library, and Boost library and the

xperiments were conducted in a PC with Intel(R) Core(TM) i5-

400 CPU@ 3.10 GHz, RAM 8 GB. 
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Fig. 7. Accuracy of pose estimation (%) and average error of head detection (in pix- 

els) with different parameter settings in a MSHF. 
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Fig. 8. Qualitative results of our detector on AFW, LFW, CCNU, and Pointing’04. The 

ellipses outline the detected head in the images, which are used for the pose esti- 

mation. One can see that our MSHF method can obtain qualitative results on these 

challenging datasets. 

Fig. 9. On the AFW dataset we compare our performance with the state-of-the-art 

methods including OpenCV frontal+profile Viola–Jones detector [5] , Tree-structured 

part models (TSPM) [27] , structured random forests (SRF) [25] , convolutional neural 

networks (CNN) [7] , DMP [12] and face.com. 
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.2. Parameter selection 

In training the trees, we adopted bagging for sample selection,

nd each tree was trained on a random subset that contains 10% of

he examples. Fig. 7 presents the accuracy of pose estimation and

verage error of head detection with respect to four key parame-

ers. 

Fig. 7 (a) depicts the accuracy and average error with respect to

he number of splitting iterations. It is clear that as the iterations

ncreased the performance of MSHF in term of both accuracy and

rror improved, and it reached a plateau at about 500. Allowing

reater number of splitting iterations makes no further changes.

ence, we used 500 splitting iterations per node. 

Fig. 7 (b) depicts the accuracy and average error with respect to

he number of tree depth. The trend was very similar to that of

he number of iterations except that the accuracy of pose estima-

ion reached a plateau quickly. However, considering the error, we

dopted 15 as the maximum depth of trees in the random forests. 

Fig. 7 (c) depicts the accuracy of pose estimation and average

rror of head detection with respect to patch size. There existed a

eak accuracy and a minimum error when the range of patch size

aried from 25 to 30. Hence, it is plausible to take the patch size

f 30 × 30 as a balance to the accuracy and error. Either a small or

 large patch size produced sub-optimal outcomes. Indeed, a small

atch fails to provide an indication for the expected estimation;

hereas a large patch is prone to mistakes due to occlusion and

ackground noise. 

Fig. 7 (d) depicts the accuracy of pose estimation and average

rror of head detection with respect to the number of trees. As

hown in the plots, 60 trees for head detection and 80 trees for

ose estimation yielded the greatest performance and hence were

sed in the rest of our experiments. 

.3. Head contour detection 

Fig. 8 illustrates exemplar results of head detection using our

roposed method on AFW, LFW, CCNU, and Pointing’04 datasets,

hich include various cases of occlusions, illuminations, resolu-

ions, and make-ups in unconstrained challenging environments.

he ellipses outline the detected heads in the images. Our MSHF

ethod obtained qualitative results on these challenging datasets. 
In order to evaluate head detection results of our methods, we

ompare the method with OpenCV frontal+profile Viola–Jones de-

ector [5] , Tree-structured part models (TSPM) [27] , structured ran-

om forests (SRF) [25] , CNN [7] , DMP [12] and face.com detector

n AFW dataset. We adopt the PASCAL VOC precision–recall pro-

ocol for face detection (requiring 50% overlap). Evaluation results

n AFW dataset are summarized in Fig. 9 . Our method outperform

iola–Jones, TSPM, DMP and SRF significantly and are only slightly

elow CNN. The CNN model needs more training images and GPU

upporting, while our MSHF can achieve the similar performance

n CPU instead of GPU. Noted that our performance is similar to
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Table 1 

Average MSD in head delineation using different methods. 

Methods LFW Pointing’04 CCNU AFW 

Viola–Jones [5] 77.5 (6.2) 58.4 (5.6) 70.3 (7.1) 80.4 (6.4) 

SRF [25] 61.4 (4.0) 47.2 (3.3) 54.5 (4.8) 72.3 (5.2) 

MSHF 39.7 (2.3) 36.5 (1.5) 38.6 (2.9) 55.3 (4.9) 

Fig. 10. Examples of pose estimation using the CCNU, LFW, Pointing’04, AFW 

datasets and a video (the right bottom one). Our MSHF method can obtain qual- 

itative results on these challenging datasets with non-visible faces, illuminations, 

resolutions, poses, occlusions, expressions and make-ups, etc. 

Table 2 

Accuracy (%) and average errors (degrees) of MSHF method. 

Datasets Yaw Pitch Yaw + Pitch Ave. error STD 

Pointing’04 92.3 90.7 84.0 6.6 3.5 

LFW + AFW 85.6 80.3 70.4 11.6 5.9 

CCNU 83.8 86.4 74.2 12.4 6.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Accuracy (%) and average error (in degrees) using different methods 

on Pointing’04 dataset. 

Methods Yaw Pitch Yaw + Pitch Ave. error STD 

MLD [31] 84.30 86.24 72.3 7.19 4.9 

D-RF [18] 83.52 86.94 71.83 13.4 5.5 

HF [32] 82.3 84.86 70.54 13.7 5.2 

M-SVM [8] 80.6 82.5 60.46 20.2 5.7 

M-RF [19] 78.4 68.73 62.23 26.3 8.4 

NN [14] 79.5 70.36 56.7 29 7.5 

MSHF 92.3 90.7 84.0 6.6 3.5 

Table 4 

Accuracy (%) and average error (in degrees) using different methods on 

AFW and LFW datasets. 

Methods Yaw Pitch Yaw + Pitch Ave. error STD 

AVM [33] 80.56 74.75 58.33 17.2 –

D-RF [18] 80.8 77.4 58.9 13.5 7.3 

Embedding [34] 72.5 60.13 43.38 28.15 –

TSPM of [27] 81.0 – – 15.3 –

MSHF 85.6 80.3 65.65 11.6 5.9 

Table 5 

Computation time comparison ( per second). 

Method MSHF D-RF [18] HF [32] M-RF [19] Viola–Jones + SVM 

Mean 0.4357 0.98995 1.06547 1.36859 1.0446 

STD. 0.11 0.15 0.19 0.18 0.13 

Fig. 11. Average errors at different sub-layers of the MSHF. 
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the performance of commercial face.com detector without needing

hundred million of training images. 

To gain a quantitative understanding of the delineation error

of head contour regression, we adopted the mean surface distance

(MSD) [24] : 

D = 

∑ 

x,y 

∥∥d(x, y ) − ˙ d (x, y ) 
∥∥

2 
, (14)

where d ( x, y ) is a point on the detected head boundary and 

˙ d (x, y )

is a nearest point on the reference head boundary. MSD com-

putes the cumulative distance of the head contour to the refer-

ence. We also compared our method with among detected head

contour methods. Table 1 presents the average MSD and STD. on

the four datasets by using the three methods. The unit of error is

pixel. With the four datasets, MSHF consistently outperforms both

Viola–Jones detector [5] and SRF [25] in head delineation with

much smaller MSD as well as a smaller standard deviation. MSRF

reduced the MSD by approximately 30% with respect to SRF. It is

evidential that MSRF yielded more accurate head detection results.

4.4. Accuracy of pose estimation 

Fig. 10 depicts examples of head pose estimation results on

CCNU, LFW, Pointing’04, AFW datasets and real-life videos. The el-

lipses enclose the detected head within the images. The estimated

head pose angles are written above the ellipses, where the left

is the yaw angle and the right is the pitch angle. Additionally,

Fig. 10 shows some example of pose estimation in a real-life video

of a crowd. One can see that our MSHF method can obtain qualita-

tive results on these challenging datasets with various non-visible
aces, poses, illuminations, resolutions, occlusions, expressions and

ake-ups, etc. 

Table 2 lists the accuracy with respect to the yaw and pitch ro-

ations of our MSHF method as well as the average error in terms

f degrees. A 4-fold cross-validation was conducted. Among the

our datasets, our method achieved the greatest performance with

ointing’04 dataset. The accuracy in yaw and pitch angles were in

he range of 80% to 90%, respectively. Note that LFW, AFW and

CNU datasets consist of great variation of poses, lighting, occlu-

ions, etc. For these three more challenging datasets, the accuracy

as also above 80% for yaw rotation and above 70% for pitch rota-

ion. The average error reached 6.6 ° for the Pointing’04 and those

f the other two were close to 10%. In all cases, the standard devi-

tion of the average error was fairly low. 

In our method, a multi-level hybrid forests based on multi-

tructured features is used and refined estimations of head pose

re produced within this hierarchical structure. Fig. 11 shows the

verage errors at different sub-layers of the MSHF for pose esti-

ation. The starting point where the MSHF sub-layer is zero in-

icates that a conventional random forest was used to make an

stimation of the head pose. The average error of this conven-

ional RF was 26.3 °. The MSHF sub-layers of 1 through 4 give the

ntermediate estimations and the MSHF sub-layer 5 gives the fi-

al pose estimation. As shown in Fig. 11 , as the analysis traced

hrough the random forests, the pose was refined to be much more
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Fig. 12. Accuracy of MSHF using various image features with respect to the number 

of neighborhood patches. 

Fig. 13. Using different head detectors with respect to the number of neighborhood 

patches. 
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ccurate. The final average estimation error was 7.9 ° as the result

f the 5th sub-layer in the MSHF. This indicates that with multi-

evel hybrid forests improved the estimation accuracy. In theory,

dditional sub-layers of MSHF could further improve the accu-

acy; however, in practice the complexity in training such random

orests and overfitting issue make more sub-layers a less favorable

hoice. 

In comparison with the state-of-the-art head pose estimation

ethods, we conducted experiments using the Dirichilet-tree en-

anced random forest (D-RF) [18] , Multivariate label distribution

MLD) [31] , Hough forest (HF) [32] , multi-class random forest (M-

F) [19] , multi-class SVM (M-SVM) [8] , and neural networks (NN)

14] on Pointing’04 head pose dataset. The same training and test-

ng datasets were used, and we employed a 4-fold cross-validation.

able 3 lists the average accuracy and error across using these

ethods. MLD [31] , D-RF [18] and HF [32] yielded comparable re-

ults with an accuracy of approximately 70% in yaw and pitch ro-

ations. MLD [31] proposed to associate a multivariate label distri-

ution to each image for head pose estimation in yaw and pitch

otation. D-RF [18] proposed a dirichlet-tree distribution enhanced

andom forest to 25 class head pose estimation. HF [32] improved

andom forests with Hough voting for real-time head pose esti-

ation. M-SVM [8] , M-RF [19] , and NN [14] produced similar ac-

uracy in the range of 60%. MSHF exhibited the highest accuracy

f 84% and the accuracy of the estimation of the yaw component

eached 92.3%. The multi-structured features from head contour-

atches and a weighted neighbor aggregation method removes the

nwanted patches from face deformation and large rotation an-

le in unbalanced sample sets, which ensures improved accuracy

n our proposed method. The improvement with respect to the

econd best (MLD [31] ) is about 9%. We get the same observa-

ion from the average estimation error. The average error of MSHF

ethod was 7.9 °. In addition, the standard deviation of MSHF indi-

ates that MSHF achieved the greatest consistency with a smallest

TD. It is evidential that our MSHF improved the head pose esti-

ation with great robustness. 

Table 4 lists the average accuracy and error across on more

hallenging AFW and LFW datasets using AVM [33] , D-RF [18] ,

eature-embedding [34] , TSPM [27] and our MSHF. AVM [33] pro-

osed features-based manifold embedding for head pose estima-

ion in unconstrained environments. The average accuracy reached

o 58.33% within 15 ° in horizontal and vertical direction estima-

ions. TSPM of [27] presented a unified the mixture tree-structured

art model for face detection, pose estimation, and landmark es-

imation in real-word and wild images. The TSPM method only

stimated head poses in the horizontal direction with an average

ccuracy of 81%, while our proposed method can estimate head

ontour and head poses in horizontal and vertical directions.

eature-embedding [34] proposed a feature embedding based re-

ression function method and achieve the average accuracy of

3.38% in the challenging datasets. The compared results can be

hown in Table 4 . Our MSHF method outperforms other methods

ith an average accuracy of 65.65% and average error of 11.6 ° in

he horizontal and vertical estimation on the challenging datasets. 

.5. Analysis of different image features and head detectors with 

espect to neighborhood patches 

In our method, various image features can be used as input

or training of a MSHF. It is to our interest to study the impact

f image features to the estimation accuracy. However, the cover-

ge of image patches is an integral factor and cannot be separated

rom the employment of image features. To understand the effects

f features and patch coverage, we conducted experiments with

our features including multi-structured features, LBPH, Gabor filter
ank with eight different rotations and five different phase shifts,

nd gray values of raw input image. 

Fig. 12 illustrates the curve of average error of pose estima-

ion using different image features with respect to the number of

eighborhood patches. The horizontal axis is the number of neigh-

orhood patches in the textbfweighted neighbor aggregation; the

ertical axis is the average error of pose estimation. As shown in

he plot, estimation error of head pose decreases with the incre-

ent of the number of neighborhood patches regardless of the

mage feature used. The decrement gradually reached a plateau

nd any further increment of number of patches had little im-

act to the error. Such elbow point is about 7 for all cases. Among

he four features, our proposed multi-structured features extracted

rom head contour-patches consistently performed better than the

thers did. Gray value exhibited the highest error. Meanwhile, one

an see the number of neighborhood patches 9 is a good choice in

ur experiments. 

In order to evaluate our joint detection-estimation method,

e compared the average head pose error with different head

etectors with respect to the number of neighborhood patches.

e compared our MSHF detector with the following: (1) OpenCV

rontal+profile Viola–Jones detector [5] , (2) Tree-structured part

odels (TSPM) of [27] , (3) Structured random forests (SRF) of [25] .

s shown in Fig. 13 , our proposed MSHF demonstrated a significant

dvantage to other methods when different number of patches

ere used. Our MSHF method all outperformed other methods

or joint head pose estimation due to declining the influence of

ead detection by the joint detection-estimation method. It is in-

eresting to note that the error of using head-contour patches from
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Viola–Jones head detector is less influenced by the number of

patches. It is proved the benefit of our proposed joint detection-

estimation method. 

4.6. Analysis of time complexity 

Table 5 reports the average computational time of five meth-

ods on AFW dataset. The methods were implemented using C++,

OpenCV library, and Boost library and the experiments were con-

ducted in a PC with Intel(R) Core(TM) i5-2400 CPU@ 3.10 GHz,

RAM 8 GB. It can be seen that all methods are fairly efficient in

processing the test images. MSHF yielded an average of 0.4357 s,

whereas the others are about 1 s or above. The standard deviation

of the computational time of MSHF is also the minimum among

all. It is evident that MSHF is more efficient; the reduction with

respect to D-RF (the second most efficient method) is about 56%. 

5. Conclusion 

This paper describes a multi-level structured hybrid forest

(MSHF) for joint head detection and pose estimation. The MSHF

extends random forest to integrate classification-regression forests

by introducing multi-level splitting function and multi-structural

features to achieve a joint head detection and pose estimation.

Multi-level splitting functions are used to construct different tree

in different layer of MSHF. Multi-structured features are extracted

from randomly selected image patches and head contour is derived

using the signed distance of the patch center to the head contour.

The randomly selected sub-regions from these patches are used

to construct a multi-level structured random forest. The weighted

neighbor structured aggregation is introduced to the MSHF by inte-

grating discrete votes from hybrid trees to achieve continuous pose

angles in horizontal and vertical directions. Our proposed MSHF

can do head region location, head contour detection, head pose

classification, and continuous head angle estimation in a joint way.

Experiments were conducted using public challenging datasets

and video streams. Our experimental results demonstrated that

among the four image features adopted in our experiments, multi-

structured features extracted from head contour-patches consis-

tently outperformed the others. In comparison to the state-of-the-

art methods, MSHF yielded more accurate head contour detection

results. The averaged time for performing a joint head detection

and pose estimation using neighborhood multi-structured feature

around head contour is about 0.44 s. Our method achieved the

greatest performance with an average accuracy of 90% and the av-

erage error of 6.6 °. The standard deviation of the average error was

fairly low. It is evidential that our MSHF improved the head pose

estimation with great robustness. In future, we plan to investigate

on-line learning methods to achieve real-time estimation by inte-

grating head movement tracking. 
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