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Abstract—Video-based facial expression recognition (VFER)
is challenging due to variations caused by cultural back-
ground and expression camouflage. To tackle these problems,
researchers introduced eye movement signals to complement
visual information. However, existing methods either require
expensive devices to capture high-quality eye movements or
can only extract low-quality eye movements visually, making
them ineffective in the real world. To address this, we propose
an eye movement-instructed VFER (EM-VFER) that leverages
high-quality eye movements to instruct the visual learning,
obtaining robust performance without requiring costly devices
during inference. Specifically, our EM-VFER operates in two
stages: the high-quality eye movement pre-training stage and
the eye movement-instructed video fine-tuning stage. In the
pre-training, we compile an Eye-behavior-aided Multimodal
Emotion Recognition (EMER) dataset and use it to train a
multimodal Transformer. During the fine-tuning, we propose
a novel progressive eye movement-instructed learning to take
better advantage of the prior knowledge about high-quality eye
movement signals from EMER. The instructed fine-tuning model
could then make more robust predictions on downstream facial
expression datasets. We evaluate our approach on three macro-
expression datasets (DFEW, MAFW and Aff-wild2) and two
micro-expression datasets (CASME III and CASME II). The
results demonstrate that EM-VFER significantly outperforms
existing methods. The code will be available.

Index Terms—Video-based facial expression recognition, eye
movement signals, pre-training, fine-tuning, instructed learning.

I. INTRODUCTION

Video-based facial expression recognition (VFER) can ef-
fectively help understand and interpret emotional states during
video-based communications. It involves the recognition and
understanding of facial expressions from continuous frame
images in a video. Currently, VFER is one of the impor-
tant topics driving forces for the development of computer
vision, emotion computing, and artificial intelligence technol-
ogy [1]-[13]. An effective VFER model can facilitate many
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downstream human-computer interaction-based tasks, such as
medical assistance and safe driving.

Most existing VFER research has focused on analyzing
and recognizing facial expression-related dynamics from video
sequences. Techniques such as optical flow analysis [14],
keypoint tracking [15], and facial action unit analysis [16]
are widely used to detect changes and dynamics in facial
features across video frames to identify different facial ex-
pression states. Recently, robust sequence modeling models
like Transformer networks [17], [18] have been developed for
VEER. For instance, Ma et al. [17] proposed a unified spatio-
temporal Transformer to jointly capture spatial and temporal
dependencies, enhancing VFER. Despite the achievement, we
found that they focus primarily on facial expression-related
motion changes and still struggle to accurately capture weak,
fake, or flickering expressions. For example, a fake smile
may represent sadness but the smile-related facial movements
would make VFER models tend to predict “happy” as the
output.In addition to this, individuals from different cultural
backgrounds and upbringings have differences in facial ex-
pressions, which may interfere with the recognition of real
emotions [19]. Without sufficient training data, it would be
very challenging to train a Transformer-based VFER to be
aware of these nuanced details.

To overcome this problem, some more recent studies [20],
[21] have demonstrated that objective physiological behavioral
data like eye movements can provide complementary informa-
tion for facial expression recognition. In the above example of
the fake smile, the eyes of the person in the video would be
likely to look down, thus incorporating this signal may help
generate more accurate predictions about expressions. Some
early methods for incorporating eye movement information
typically include techniques such as optical flow fields of the
eyes [22], which capture changes in the direction and speed of
eye movements, or eye localization techniques based on Active
Shape Models (ASM) [23], which monitor geometric changes
in the eye region. Despite these attempts, these traditional
methods may not adequately capture the dynamic features of
eye movements in subtle temporal sequences, obtaining rela-
tive low-quality eye movement information. To address these
shortcomings, recent literature [24], [25] employ specific and
expensive sensing devices' to focus more on intrinsic high-
quality eye movement signals, such as pupil diameter, eye gaze
coordinates, and eye behaviors. These signals provide more

Uhttps://www.tobii.com/products/eye-trackers/screen-based/
tobii-pro-fusion

Authorized licensed use limited to: China University of Geosciences Wuhan Campus. Downloaded on October 09,2025 at 08:54:21 UTC from IEEE Xplore. Restrictions apply.

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Affective Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2025.3599859

Existing Device-based Method:

W © High cost
Device High-quality EM
Existing Model-based Method:
% Low cost

@ Low performance

Network Low-quality EM

Eye Movement-instructed VFER Approach (EM-VFER) (Ours):

mu Pre-training % Low cost
MERT [T

Video Data
Fine-tuning
N MERT
Fine-tuning

EM Signals
EMER Dataset

O V-
Extract
—»"“’"‘V‘

EM information

Instruct

VFER Dataset

(a)

80

Ours MAE-DFER(2023)

75 ‘ $2D(2024)

~
o

MMA-DFEW*(2024)
DFER-CLIP(2023)

WAR on DFEW (%)
[*)]
wv

CEFLNet(2022)
EST(2023)

@
o

SVFAP(2024)
55

7
0 10 20 30 40 50 80 90

Number of Tunable Parameters (M)

(b)

100

Fig. 1. The comparison of different methods with ours. (a) presents the pipeline of different methods. Previous methods rely on either expensive devices to
extract high-quality EM signals or model-based methods to extract low-quality visual eye movement information. In contrast, our EM-VFER first leverages a
high-quality EM dateset to instruct learning visual EM information on videos, and then fine-tunes on downstream VFER datasets purely relying on videos,
therefore, reducing the reliance on expensive devices while maintaining high-quality eye movement information during inference. (b) shows the Weighted
Average Recal (WAR) results and tunable parameters of different methods on the DFEW dataset, with the circle size indicating the quantity of tunable
parameters and * indicates results obtained using only the Visual modality. Our method achieves high performance with fewer tunable parameters.

comprehensive and detailed information, thereby enhancing
the accuracy and reliability of facial expression recognition.
However, despite some improvements, existing eye movement-
based methods generally either require expensive sensing de-
vices to obtain high-quality eye movement signals or can only
depend on model-based methods to extract low-quality visual
eye movement information from videos with compromised
benefits, which falls short in real-world practical applications.

To address the above problem, we attempt to maximize
the benefits of eye movement signals by introducing a novel
eye movement-instructed VFER (EM-VFER) approach. We
aim to achieve a better trade-off between high-quality but
costly eye-tracking devices and efficient but unreliable visual
eye movement information. To achieve this, we apply a
novel 2-stage training framework: high-quality eye movement
pre-training and eye movement-instructed video data fine-
tuning. To start with, we employ a multi-modal Transformer
model, namely Multimodal Emotion Recognition Transformer
(MERT), that accepts both eye movement signals and video
frames to facilitate VFER. Using this model, we first introduce
the high-quality eye movement pre-training stage. In this
stage, we leverage the Eye Movement-assisted Multi-modal
Emotion Recognition (EMER) dataset for pre-training, which
consists of high-quality eye movement signals collected by
eye-tracking devices. Using the EMER dataset, the MERT
model could learn accurate eye movement patterns that can
complement vision-based FER effectively. In the second stage,
namely eye movement-instructed video data fine-tuning, we
attempt to waive the necessity of high-quality eye movement
devices and only use visual eye movement information on
video data from common VFER datasets for fine-tuning. To
deal with potentially significant noises in visual eye move-
ment information, we propose to utilize the pre-trained prior
knowledge about high-quality eye movement signals to help

adapt the pre-trained MERT to common VFER data under a
novel progressive eye movement-instructed learning (PEML)
framework. In PEML, we attempt to estimate the alignment
between the distributional representations of the high-quality
eye movement signals and the visual eye movement informa-
tion, and the alignment results are considered as instructing
weights. By using the weights, we can instruct the learning
of the model by revealing whether the current visual eye
movement information is more reliable or more noisy, and we
reduce the importance of noisy representations. Notably, the
instructing weights, though primarily designed for fine-tuning,
the knowledge gained in this process enhances the model’s
performance at inference without requiring high-quality eye
movement signals. Built upon the instructing weights, we
devise a progressive adaption process to gradually instruct the
MERT model on video data, aiming to further lower the risk
of forgetting the prior knowledge due to significant domain
gaps. Lastly, after the 2-stage training, our model can deal
with VFER data without requiring any specific eye-tracking
devices, thus saving much computational costs and enhancing
real-world applications.
In summary, our contributions are as follows:

o We propose a new effective and efficient framework for
video facial expression recognition , namely EM-VFER,
that utilizes high-quality eye movement signals to instruct
learning on low-quality visual eye movement information
during training while only uses video data for inference.
To the best of our knowledge, our EM-VFER, for the first
time, can effectively tackle both macro and micro VFER
problems by leveraging eye movement signals.

e EM-VFER is a 2-stage training framework for VFER.
In the first stage, we pretrain the model (MERT) on the
EMER dataset, which provides high-quality, accurate eye
movement patterns. In the second stage, we fine-tune
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MERT on downstream VFER datasets, where only low-
quality visual eye movement information is available.
To address the distribution gap, we introduce PEML,
which incorporates an eye movement-instructed weight-
ing method for gradual fine-tuning. This approach miti-
gates the mismatch between pretraining and downstream
data, ensuring high-quality eye movement feature distri-
bution and significantly improving VFER performance
without introducing additional eye tracking devises.

o Experimentally, we conducted extensive experiments on
two VFER tasks, including macro-expression recognition
(namely DFEW, MAFW and Aff-wild2 datasets) and
micro-expression recognition (namely CASME III and
CASME II datasets), showing that our approach achieves
new state-of-the-art results. Specifically, we achieve aver-
age relative gains of 21.49% in UAR and 14.21% in WAR
on DFEW and MAFW datasets, compared to the baseline
method. Additionally, for micro-expression recognition,
we observe average relative improvements of 16.36%
in UAR and 11.23% in UFI, confirming the effective-
ness and generality of our proposed approach. Code
will be available at https://anonymous.4open.science/r/
EM-VFER-7181.

II. RELATED WORK
A. Video-based Facial Macro-Expression Recognition

Recent advances in video-based facial macro-expression
recognition focus on dynamic models to enhance accuracy
and robustness. Zhang et al. [26] proposed a joint network
combining a PHRNN and an MSCNN to capture geometric-
appearance, part-whole, and dynamic-static features, enhanc-
ing spatio-temporal expression recognition.Niu et al. [27]
proposed the Four-player GroupGAN, which enhances facial
expression recognition by improving the discriminative capa-
bility for weak expressions. Sun er al. [28] uses mask-based
reconstruction pre-training, inspired by VideoMAE, for feature
extraction from facial videos. Chen et al. [16] extend static
models with temporal and landmark-guided modules. Zhang
et al. [29] incorporates frame labels to improve discriminative
feature learning and temporal fusion. Ma er al. [30] uses
a local-global spatio-temporal Transformer to capture local
interactions and long-range dependencies with compact loss
regularization. Li et al. [31] combines global convolutional at-
tention with intensity-aware loss to handle varying expression
intensities. However, many methods still struggle to capture
subtle, fake, or flickering expressions, limiting robustness in
complex emotional recognition.

B. Video-based Facial Micro-expression Recognition

Micro-expression recognition involves detecting, recog-
nizing, and classifying subtle facial expressions. Methods
can be classified into manual machine learning and deep
learning-based approaches. Manual methods focus on pixel-
level changes, preserving detailed information for different
facial expressions. For example, Liu et al. [32] proposed an
optical flow-driven method considering both local motion and
spatial position, while Huang ef al. [33] used robust principal

component analysis and localized binary patterns for spatio-
temporal feature extraction. These methods are robust but
computationally complex, often requiring feature selection to
manage high-dimensionality.In contrast, deep learning-based
methods have evolved from multi-stage training to end-to-
end approaches. Sun er al. [34] transferred knowledge from
a pre-trained neural network to a student network for micro-
expression recognition, while Gupta et al. [35] used action
units, landmarks, and appearance features with 2D CNNs to
capture subtle deformations and analyze spatial and temporal
behaviors. While deep learning methods capture deeper micro-
expression features, they require large, realistic datasets for
optimal performance.Most methods focus solely on facial
expressions, neglecting that micro-expressions often coincide
with other subtle cues, such as eye movements, in real-world
scenarios. Relying only on facial expressions limits model
performance and generalization.

C. Eye Movement-based Multimodal Emotion Recognition

Eye movement-based multimodal emotion recognition com-
bines eye movement signals with other information sources,
such as facial expressions and EEG, to enhance the ac-
curacy and robustness of emotion recognition. Gong et al.
[36] improved emotional information extraction by integrating
emotion-related brain region signals with eye movement data.
Wang et al. [37] proposed the ETF, based on a pure attention
mechanism, which combines EEG and eye movement signals
to better differentiate anger and surprise emotions. Wu et
al. [38] incorporated head pose and eye movement signals
to guide the use of facial features in continuous emotion
recognition. Gong et al. [39] used EEG and eye movement
signals to mitigate spurious correlations between different
modalities. Despite these advances, practical applications are
still limited by the high cost of equipment.

ITIT. METHOD
A. Problem Definition and Overview

To improve the performance of VFER, we propose inte-
grating eye movement information in an efficient yet effective
way. In particular, we propose an eye movement-instructed
VFER approach (EM-VFER) that utilizes high-quality eve
movement signals to instruct the fine-tuning on the video-
based VFER data, thus obtaining much more accurate expres-
sion recognition performance. As introduced previously, EM-
VEFER operates in two stages: the high-quality eye movement
pre-training stage and the eye movement-instructed video data
fine-tuning stage.

In the high-quality eye movement pre-training stage, we
employ a multimodal network, namely Multimodal Emo-
tion Recognition Transformer (MERT), to learn from high-
fidelity eye movement signals. To facilitate pre-training, we
compile a new pre-training Eye-behavior-aided Multimodal
Emotion Recognition (EMER) dataset, denoted as P =
{(Vi,Ei,y;)|i =1,..., NT}, where i indexes over samples,
V; represents the i-th facial video, F; represents the cor-
responding i-th eye movement signals obtained from eye-
tracking device, y; denotes the true facial expression la-
bel, and N* denotes the number of samples in P. Each
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Fig. 2. The proposed EM-VFER framework consists of two stages: (a) high-quality eye movement pre-training and (b) eye movement-instructed video
data fine-tuning. In the pre-training stage, MERT is trained on the EMER dataset, integrating facial video and high-quality eye movement (EM) signals via
multi-level cross-modal fusion, enabling comprehensive feature alignment for VFER. In the fine-tuning stage, PEML addresses the gap between high- and
low-quality EM through input data instruction, leveraging high-quality EM knowledge, and loss instruction, progressively adjusting feature weights. This
allows the model to better utilize low-quality visual EM information, enhancing VFER performance.

eye movement signals F; {dr,dRr.9x,9yv,A} consists
of the diameters (dp.dr) of the left and right pupils,
eye gaze coordinates (gx,gy), and eye behaviors A
{blinking, saccades, gazing}. During pre-training the MERT
would learn to generate effective multimodal features for ro-
bust FER. After pre-training, we obtain optimized networks for
encoding facial video input, eye movement input, and cross-
modal fusion. In the meantime, we can extract distributional
features of the high-quality eye-movement signals to help
instruct the fine-tuning.

In the eye movement-instructed video data fine-tuning stage,
the downstream facial video dataset is denoted as D
{(Vj, yi)li=1,.., ND}, where j indexes over downstream
facial video samples, V; represents j-th facial video, y;
denotes the facial expression labels within D, and NP is
the number of samples in D. Here, the D does NOT have
high-quality eye-movement signals. To take better advantage
of pre-trained knowledge for video-based FER, we devise a
novel progressive eye movement-instructed learning (PEML)
to help fine-tune MERT. Due to the gap between high-quality
eye movement signals from pretrained datasets and low-quality
visual eye movement information on videos, it is challenging
to directly incorporate prior knowledge about eye movements,
thus our proposed progressive instructed learning aims to
gradually adapt prior knowledge during the fine-tuning.

An overview of our 2-stage training framework is illustrated
in Figure. 2. We will subsequently discuss both stages in detail.

B. High-quality Eye Movement Pre-training

1) Pre-training EMER dataset: To facilitate the high-
quality eye movement pre-training, we first compile a new
multimodal per-training dataset, EMER, which consists of
facial videos V; and high-quality eye movements FE;, collected

by a high-definition camera and a Tobii Pro Fusion eye-
tracking equipment!. The details for EMER can be seen the
Sec.IV.A in the experimental part and the Appendix materials.

2) Multimodal Emotion Recognition Transformer (MERT):
With the EMER, we devise a MERT to model both eye-
movement signals and video data at the same time. As shown
in Figure 2(a), MERT consists of three main components:
modality-specific encoding, multi-level cross-modal fusion,
and a prediction head. When pre-training, the MERT would
learn to generate a multimodal feature F' using high-quality
eye-movement signals (denoted as F;) and video data (denoted
as V;) in EMER:

F = fuerr(ov(Vi), oe(Ei)), ¢))

where fyprr is the multimodal fusion of MERT, ¢y is a
facial video encoder and ¢p is an eye movement encoder.
Then, a prediction head is added on top of F', and training is
performed according to the label y;, thus the loss function can
be written as:

Lpre = CE(p(F)ayi)a (2)

where L, is the pretraining loss, and C'E is cross-entropy.
To implement these, we first compile a high-quality eye
movement dataset to provide F; and V;. We then devise
the multimodal network MERT with a Transformer-based
prediction head p. We will discuss them in this section.
Modality-specific Encoding: Given 2 types of input, we
first employ two modality-specific encoders, i.e., facial video
encoder and eye-movement encoder. They extract facial ex-
pression features and eye-movement features, respectively.
Formally, given the facial video V; € RT*3x224x224 zpq
eye-movement signals F; € R7*% as input, we employ two
ViT-based encoders [40] as the facial video encoder ¢y and
the eye-movement encoder ¢p, respectively, which are used
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to extract face visual features Fy € RT*Nvx728

movement features Fp € RNe X728 yq:

Fy =ov(Vy), Fe = op(E;), 3)

where N, = 197, N, = 257 are the number of facial video
patches and eye-movement tokens in ViT, respectively. T is
the number of frames for the video. Notably, in this study, the
ViT architecture in the two encoders consists of a 12-layer
Transformer encoder.

Multi-level Cross-modal Fusion: Fusion is usually impor-
tant for multimodal modeling [41], [42]. Here, we apply a
deep cross-modal fusion strategy to enable better modeling
performance. More specifically, we feed the information from
each modality into the information of another modality, and
we perform this cross-modality fusion for several levels in the
encoding process. Figure 2(a) provides the detailed architec-
ture of the /-th layer representation learning in this module.

Using the F‘l,_1 and F]lE_1 at the [ — 1-th layer of ¢, and ¢,
we first employ a global average pooling (denoted as GAP),
to obtain global facial expression and eye-movement features,
represented as GAP(FL ') and GAP(FL '), respectively.
Then, we integrate the global features with the original uni-
modal features to obtain the cross-modal emotion features:

F, =F;7'+G(a- - F7' @ GAP(FE)), @)
FL=F,'+G(a-Fi' © GAP(F; ), (5)

and eye-

where & is the element-wise addition operation, o denotes
the learnable parameter that controls the cross-modal feature
to fuse during training, and G() contains a linear layer with an
activation function. I}, and F, are the {-th modality-enhanced
emotion representations.

At the last layer, we generate the final multimodal feature
F by adding the modality-specific features after aligning their
sequence lengths:

F = fuprr(Fv, Fg) = FE + FE, (6)

where the L is the total number of layers. The layer number
actually depends on the depth of the employed facial video
encoder. If the facial video encoder has 12 layers, the Fz* and
F{? would be our final modality-specific encoding results.
Prediction Head: Based on the multimodal feature F', we
can then perform robust FER by making predictions. We add
an extra Transformer Trans and a classifier C' to achieve this:

p(F) = C(Trans(g/k/v = F)), ()

where q/k/v are the query, key, and value tensors for the
Transformer. Here, the Trans mainly performs self-attention,
thus the output of p(F") has the same length as the input tokens.
To perform classification, the element corresponding to the
CLS token in p(F') is passed through a classifier C, which
generates the final prediction output.

C. Eye movement-instructed video data fine-tuning

In general, to better adapt the pretrained MERT to down-
stream datasets where only low-quality visual eye movement
information can be extracted, we introduce the PEML in order

to instruct the fine-tuning for MERT gradually. Through such
progressive instruction, negative effects caused by significant
domain gaps between pre-trained and fine-tuning datasets
could be mitigated, thus improving the fine-tuning perfor-
mance. This also helps take better advantage of prior high-
quality eye movement signals, when learning on common FER
datasets.

More specifically, our PEML instructs the learning on two
components: (1) Instruction for Input Data Modeling; (2) Loss
Instruction at Each Level of the MERT.

For Instruction for Input Data Modeling, we attempt to in-
troduce extra learnable prompts [43] to divert the MERT from
fitting too much on downstream eye movement information
and also adjust the importance of the learnable prompts given
an estimated quality of the current eye movement information
on video data. In the literature on FER and related areas,
adding learnable prompting tokens helps pretrained networks
adapt to downstream datasets more easily. We refer readers
to the papers [44] for more details. Here, we mainly describe
how our approach is implemented based on these learnable
prompting tokens. In particular, we assume that lower quality
would make it difficult for the learnable prompt to effectively
represent meaningful eye movement information for down-
stream tasks due to excessive noise.

For Loss Instruction at Each Level of the MERT, we add ad-
ditional losses on top of the output of each level of the MERT
and assigns these losses with increasing importance. That is,
the lower levels of MERT would learn about downstream
data more conservably while higher levels of MERT would
learn about downstream data more aggressively. This helps
the MERT adapt to downstream datasets more appropriately
without introducing catastrophic forgetting problems. This
pipeline is illustrated by Figure 2(b).

The following sections provide detailed introductions.

1) Instruction for Input Data Modeling: Formally, we
introduce the notion [ to represent the [-th level in MERT.
Then, the multimodal feature we can obtain from MERT at [-
th level can be written as: F'. Similar to the final multimodal
feature F' as described in Eq.6, F! fuses facial expression
feature and eye-movement feature using related encoders ¢y
and ¢g. Here, instead of directly using low-quality visual eye
movement information E; on facial video data, we introduce
instructions based on prior knowledge about high-quality eye
movement signals, then we have:

F' = frpnr (ov(Pv & V5), 0 ((W(E},€) - Pe) @ E}) ), ®)

where f!;prp denotes the implementation of Eq. 1 at the
[-th network layer, and Py and Pg are extra learnable
prompting tokens for the facial video and eye movement
modalities, respectively. Specifically, inspired by MMA-DFER
[43], we introduce six randomly initialized prompting tokens
per modality to facilitate feature learning at different depths.
These tokens are prepended directly to the patch embedding
sequence of each modality, positioned before the CLS token,
i.e., at the very start of the Transformer input sequence.
& represents the distributional features of high-quality eye-
movement signals, W is an importance re-weighting function
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computed based on the alignment between the current eye
movement feature E; and & at layer [, and @ denotes con-
catenation. By concatenating Py, and Pg to their respective
input sequences, the model encodes these prompting tokens as
additional contextual cues, guiding subsequent layers to better
attend to salient features within each modality. Moreover,
W(E, ) dynamically adjusts the learning weights: a larger
discrepancy between E; and £ indicates lower quality signals,
resulting in smaller weights and reduced fine-tuning impact on
such samples; conversely, higher quality signals receive larger
weights to reinforce their influence. As trainable parameters,
these prompting tokens are optimized during training, allowing
the model to adapt dynamically to varying sample distributions
and thereby enhancing multimodal fusion and generalization.

This mechanism enables instructed learning through high-
quality eye movement-instructed weighting, designed to en-
hance model performance during fine-tuning. Importantly, it
improves the model’s inference capabilities without the need
for high-quality eye movement signals at runtime.

High-quality eye movement-instructed weighting: As de-
scribed in Eq.8, we instruct the modeling of input data by de-
vising an importance weighting mechanism, implemented by
W(Eé, &), for the fine-tuning. Using extra learnable prompting
tokens Pgr for eye movement information on facial video
data, our introduction of W(E?, £) aims to perform a general
estimation about whether the current eye movement informa-
tion E; has plenty of noises. If the current eye movement
information on facial video is noisy, we suppose that it is
meaningless to make the learnable prompts Pr represent these
noisy points. On the contrary, if the current eye movement
information has a roughly good quality, the P would be much
more helpful for aiding the MERT to adapt to fine-tuning data.
To estimate the level of noise in E} it is straightforward to
assume that E; can be cleaner if it is close to the distribution
of high-quality eye movement signals (represented by &) and
vice versa. It is then reasonable to assign a smaller importance
to model noisy eye movement information on videos. To fulfill
this, we first formulate the W(E?, £) as:

1
/ —
WIE}, &) = dist(E}, )’

€))
where dist is a distance estimation function. Therefore, the
W(E}, E) would be higher if the distance is smaller and vice
versa. We will present more details for the calculation of E’,
& and dist as below.

For current visual eye movement information E’, we em-
ploy the MTCNN [45] to detect 68 facial landmarks from
the corresponding video V; and calculate the eye landmarks
by applying established techniques such as bilateral filtering
[46], erosion [47], and binarization [48]. This process yields
the 5-dimensional vector, capturing key aspects of the eye
movements using the same format with high-quality eye
movement signals. Then, to acquire a representation & that
can describe the overall distributional features of high-quality
eye movement signals, we found that the center of high-quality
eye movement signals is already useful. That is, we calculate

£ as the average of all the high-quality eye movement signals:

1 X
£=~p D B
=1

where N is the number of samples in the EMER dataset.
Regarding the distance estimation dist, we find that the simple
Euclidean distance is already advantageous, thus

(10)

dist(E},€) = ||€ — E}||2. (11)
As a result, this formulation estimates the alignment between
the current eye movement information Ej and the high-quality
eye movement signals from pre-trained datasets, and the worse
alignment will have a lower importance during fine-tuning.

2) Loss Instruction at Each Level of the MERT: We further
implement progressive learning by taking into account the
network depth [ , as illustrated in Figure 3. To better adapt
pretrained MERT to downstream tasks, we gradually increase
the importance of instructed learning loss through progressive
weighting for fine-tuning MERT. As a result, our approach
instructs less on lower-level features and more on higher-level
features. This ensures that the pretrained network can adapt to
low-quality visual eye movement information without being
overwhelmed by a significant gap between fine-tuning data and
pretrained data at a sudden. Then, for each level, we introduce
an additional training loss:

Lopyr =w' - Lop (pl(Fl)vyj)v (12)

where LY, is the loss, w! is the increasing loss weight,
and p' is an extra prediction head similar with Eq.7.
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Fig. 3. Details of loss instruction at each level of the MERT in PEML.

Progressive weighting: The introduction of progressive
weighting w' aims to gradually bridge the gap between the
pre-training dataset and downstream dataset. Eq. 12 describes
the progressive weighting strategy employed in the MERT.
More specifically, our progressive weighting happens during
the cross-modality fusion network. At each layer, there is
a weight w! that controls the strength of learning. In the
early stages, we attempt to assign extremely small weights
to slightly guide the MERT, especially the fusion network,
to learn patterns from downstream data for predicting facial
expressions. At later stages, we assign a larger weight, and
the final prediction has the largest weight. That is, we apply
a series of w' starting from a small value and growing into a
larger value as the network goes deeper.
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This progressive weighting in losses would support a grad-
ual knowledge adaptation process. Early fusion stages would
receive less adaptation pressure, preserving more prior knowl-
edge, while deeper fusion stages gain higher weights, guiding
the model toward downstream datasets. This is also more
beneficial than only using a final loss. In fact, the final loss
only trains the model as a whole, and the early fusion stages
might not work well on addressing potentially significant
domain gaps, especially when the pre-training dataset has
high-quality eye movement signals while downstream datasets
only have low-quality visual eye movement information on
videos. Adding losses earlier may aid the MERT in dealing
with such gaps more effectively.

3) More Details in Fine-tuning Stage and Inference: During
the fine-tuning stage, to avoid catastrophic forgetting, we tend
to fix the parameters in modality-specific encoders. Using
notions from Eq. 8, we actually freeze all the parameters in
facial encoder ¢y and the eye movement encoder ¢p. We
achieve the fine-tuning mainly by training the extra learnable
prompting tokens Py and Pg for both modalities. However,
we do adjust the weights of the network that implements cross-
modality fusion.

In inference, given only a facial video as input, we first
extract low-quality visual eye movement (EM) information
and process it alongside facial video using fine-tuned extra
learnable prompting tokens Py and Pg. Then, frozen encoders
¢v and ¢ are used to capture facial expression and eye move-
ment features, respectively. These features are fused through
the multi-level cross-modal fusion module, which, along with
the prediction head, is learned during the fine-tuning stage.
Finally, classification is performed using the learned prediction
head, enabling efficient and accurate VFER without the need
for high-quality EM signals, reducing reliance on expensive
devices.

IV. EXPERIMENTS AND ANALYSIS
A. Datasets

To pre-train on high-quality eye-movement signals, the EM-
VFER framework utilized the EMER dataset. We then eval-
vated its performance on both macro- and micro-expression
recognition tasks using five popular VFER datasets. For
macro-expression recognition, we used MAFW [49], DFEW
[50] and Aff-wild2 [51] datasets, and for micro-expression
recognition, we selected CASME III [52] and CASME 1I [53]
datasets.

1) Pre-training EMER Dataset: Figure 4 shows some
examples and the collection pipeline of EMER, which is
collected via a stimulus material-induced spontaneous emotion
generation method [54], [55]. Specifically, 115 videos, each
lasting 1-2 minutes, were retrieved from public databases
and video platforms as emotional stimulus videos. Then, 121
participants from diverse backgrounds were required to view
these videos to induce short-term and spontaneous emotional
states in a laboratory setting. During this, Tobii Pro Fusion
eye-tracking equipment' and high-definition camera were used
to record eye movements, emotion-related gaze patterns, and
facial expressions. After careful alignment, trimming, and

filtering of the raw data, EMER compiles a total of 1,303 high-
quality multimodal emotional data samples from 121 partici-
pants, predominantly covering 3 modalities: facial expression
videos, eye movement sequences, and eye fixation maps.
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Fig. 4. Collection pipeline for the EMER dataset.

In addition, EMER provides comprehensive emotion-related
annotations, as shown in Figure 4. The annotations for EMER
include three types: (1) three coarse emotion labels, (2) seven
fine-grained facial expression labels, (3) emotional arousal and
valence scores. In this study, we mainly use facial expression
annotations for deriving face expression changes and high-
quality eye movement knowledge related to facial expressions.
The details on EMER can be shown in the Appendix materials.

2) Down-stream Video-only Evaluation Dataset: Macro-
Expression Recognition Datasets MAFW is the first large-
scale, multimodal, and multi-label emotional database, com-
prising 10,045 videos. These videos are annotated with 11
single categories (anger, disgust, fear, happiness, sadness,
surprise, contempt, anxiety, helplessness, disappointment, and
neutral), 32 compound categories, and descriptive emotional
texts. Following the official setup of MAFW, we adopted a
5-fold cross-validation as the evaluation scheme. DFEW
comprises 11,697 videos, each video segment is individually
annotated by 10 professional annotators under expert guid-
ance and labeled as one of seven basic expressions (i.e.,
happiness, sadness, neutral, anger, surprise, disgust, and fear).
Following the official setup of DFEW, we utilized a 5-fold
cross-validation as the evaluation protocol. Aff-wild2 contains
594 videos annotated with three affect models: dimensional,
categorical, and action units. We focuses on the categorical an-
notations, which label each frame with one of eight emotions:
anger, disgust, fear, happiness, sadness, surprise, neutral, and
other.

Micro-Expression Recognition Datasets CASME Il , offi-
cially known as CAS(ME)3, is a third-generation sponta-
neous facial micro-expression database, with Part A containing
943 samples from 100 participants recorded using lab cam-
eras at 30 fps and a resolution of 1280x720 pixels. While
the original data is categorized into 7 emotions (happiness,
anger, fear, disgust, surprise, other, and sadness), we followed
prior works [56], [57] and grouped them into three broader
categories for analysis. CASME II consists of 255 videos,
elicited from 26 participants. The videos are recorded using
Point Gray GRAS-03K2C camera which has a frame rate of
200fps. All the frames are cropped to 280x340 pixels. The
videos are grouped into five categories: happiness, surprise,
disgust, repression and others. Following exisiting methods
[56], [57], we also grouped the videos into three categories.
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B. Experimental Settings

Training Settings: We followed standard practice by extract-
ing and resizing 16 uniformly sampled frames per video to
224x224 pixels [58]. During training, we utilized a learning
rate of le-4 with cosine annealing for learning rate decay. The
batch size was set to 2, and weight decay was configured at le-
2. We employed the AdamW optimizer with default settings,
and all experiments were conducted using PyTorch on a single
NVIDIA GTX 4090 GPU.

Evaluation Metrics: For macro-expression recognition, con-
sistent with previous approaches [16], [43], [59],we em-
ploy Weighted Average Recall (WAR) and Unweighted Av-
erage Recall (UAR) as the primary evaluation metrics for
the DFEW and MAFW datasets, respectively, while using
Accuracy (ACC) for the Aff-Wild2 dataset. WAR, which
corresponds to accuracy, assesses the model’s precision in
predicting expressions. UAR computes the accuracy for each
class and averages it across classes, normalizing for class
imbalance. ACC is defined as the proportion of correctly
predicted samples to the total number of samples, effectively
measuring the model’s overall classification performance.
For micro-expression recognition, following the approach of
previous studies [57], [60], we used UAR and Unweighted
F1 score (UF1) to evaluate model performance. UFI1 is em-
ployed to measure performance in multi-class tasks where
class imbalances exist, complementing the accuracy assess-
ment of individual classes. These evaluation metrics allow for
a comprehensive analysis and assessment of the EM-VFER
framework’s performance across different tasks.

C. Macro-Expression Recognition Task

1) Performance on DFEW: In Table I, we present a com-
parative analysis of our method, EM-VFER, against several
state-of-the-art approaches on the DFEW dataset for macro-
expression recognition.

TABLE 1
COMPARISON WITH THE SOTA METHODS FOR MACRO-EXPRESSION
RECOGNITION ON DFEW. THE BEST RESULTS ARE IN BOLD, THE
SECOND-BEST RESULTS ARE UNDERLINED, AND * INDICATES RESULTS
OBTAINED USING ONLY THE VISUAL MODALITY.

Method Modality WAR UAR
T-MEP [61] Audio & Visual ~ 68.85 57.16
HiCMAE [62] Audio & Visual ~ 75.01 63.76
UMBEnet [63] Audio & Visual ~ 74.83 62.23
DFER-CLIP [64] Visual & Text 71.25 59.61
VAEmo [65] Audio &Visual 75.78 64.02
CEFLNet [66] Visual 65.35 51.14
EST [18] Visual 65.85 53.43
IAL [31] Visual 69.24 5571
SVFAP [28] Visual 74.27 62.83
MAE-DFER [1] Visual 74.43 63.41
MMA-DFER* [43] Visual 67.15 54.34
Ous [16] Visual 74.10 60.94
S2D [16] Visual 75.98 62.57
EM-VFER(Ours) Visual 76.43  65.83

Compared to other existing visual-only methods, EM-VFER
outperforms most current visual approaches. Our method
improves upon the visual modality of MMA-DFER [43] by
13.82% in WAR and 21.14% in UAR. In comparison to

the current best visual-only method, S2D [16], our method
shows a relative improvement of 5.21% in UAR. These
results demonstrate that EM-VFER exhibits strong robustness
when using only the visual modality. Additionally, while the
multimodal VAEmo [65] achieves the WAR (75.78%) and
UAR (64.02%), EM-VFER, using only the visual modality,
achieves comparable results with a WAR of 76.43% and UAR
of 65.83%. This shows that EM-VFER effectively captures
macro-expression information in a unimodal setting, approach-
ing the performance of multimodal methods.

To further valid the effectiveness of our EM-VFER on
DFEW, Figure 5 compares the confusion matrices for the
visual-only modality MMA-DFER method [43] and our
approach. The matrix shows that EM-VFER consistently
achieves high classification accuracy across most facial ex-
pression categories, with a particularly notable improvement
in distinguishing the “disgust” category.
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Fig. 5. Confusion matrices of the MMA-DFER method (a) and our EM-
VFER approach (b) on the DFEW dataset. Hap, Sad, Ang, Sur, Fea, Dis,
Neu are the abbreviations of the corresponding expression labels. The deeper
colors indicate higher accuracy.

2) Performance on MAFW: We evaluated EM-VFER on
the MAFW dataset for macro-expression recognition and com-
pared it with state-of-the-art methods, as shown in Table II.

TABLE II
COMPARISON WITH THE SOTA METHODS FOR MACRO-EXPRESSION
RECOGNITION ON MAFW. THE BEST RESULTS ARE IN BOLD, THE
SECOND-BEST RESULTS ARE UNDERLINED, AND * INDICATES RESULTS
OBTAINED USING ONLY THE VISUAL MODALITY.

Method Modality WAR UAR
T-ESFL [49] Audio & Visual ~ 48.70 33.35
T-MEP [61] Audio & Visual ~ 51.15 37.17

HiCMAE [62] Audio & Visual — 56.17 42.65
UMBERnet [63] Audio & Visual ~ 57.25 46.92
DFER-CLIP [64] Visual & Text 52.55 38.89
VAEmo [65] Audio &Visual 58.91 45.67
SVFAP [28] Visual 54.28 41.19
MAE-DFER [1] Visual 54.31 41.62
MMA-DFER* [43] Visual 50.38 36.24
S2D [16] Visual 56.20 39.87
FineCLIPER [67] Visual 56.91 45.01
EM-VFER(Ours) Visual 57.73 44.15

EM-VFER outperformed other visual-only methods, achiev-
ing a 1.44% relative improvement in WAR compared to
the state-of-the-art FineCLIPER [67]. This demonstrates EM-
VFER’s ability to effectively extract complex facial expression
features. Compared to MMA-DFER [43], EM-VFER shows
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significant gains in the visual modality, with a 14.59% im-
provement in WAR and 21.83% in UAR [43]. Notably, EM-
VFER also achieved competitive results against multimodal
methods, with a WAR of 57.73% and UAR of 44.15%, relying
solely on the visual modality. Although HICMAE [62] has a
higher UAR (42.65%), its WAR (56.17%) did not lead to a
notable improvement in overall accuracy, indicating limitations
in recognizing certain categories. While VAEmo achieves
the best performance with a WAR of 58.91% and a UAR
of 45.67%, it utilizes two modalities, whereas our method
relies on a single modality, demonstrating the advantages and
effectiveness of our unimodal approach.

In addition, as shown in Figure 6, our model’s confusion
matrix reveals superior performance compared to the visual-
only MMA-DFER in recognizing categories with fewer sam-
ples. This highlights the model’s strong generalization ability
on imbalanced datasets, effectively identifying categories with
limited training samples.
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Fig. 6. Confusion matrices of the MMA-DFER method (a) and our approach
(b) on the MAFW dataset. Ang, Fea, Neu, Hap, Sad, Dis, Sur, Con, Anx,
Hel, Disa are the abbreviations of the corresponding expression labels. The
deeper colors indicate higher accuracy.

3) Performance on Aff-Wild2: To thoroughly evaluate EM-
VFER'’s robustness in complex real-world scenarios and its
capability to capture subtle expression variations, we conduct
experiments on the Aff-Wild2 dataset, which offers frame-
level annotations and presents diverse in-the-wild challenges.

TABLE III
COMPARISON WITH THE SOTA METHODS FOR MACRO-EXPRESSION
RECOGNITION ON AFF-WILD2. THE BEST RESULTS ARE IN BOLD, THE
SECOND-BEST RESULTS ARE UNDERLINED, AND * INDICATES RESULTS
OBTAINED USING ONLY THE VISUAL MODALITY.

Method ACC
DMUE [68] 63.64
Tr.FER [69] 68.92

RUL [70] 62.37
Eff.Face [71] 62.21
F2Exp [72] 66.34
POSTER [73] 67.74
EAC [74] 63.54
L.OFER [75] 66.02
LA-Net [76] 66.76
DAN [77] 65.82
POSTER++ [78] 69.18
GReFEL [59] 72.48
MMA-DFER* [43]  68.18
EM-VFER(Ours) 74.24

As shown in Table III, EM-VFER achieves state-of-the-

art performance with an accuracy of 74.24%, surpassing the
current best method, GReFEL (72.48%), by approximately
2.43% relative improvement. Compared to the visual-only
baseline MMA-DFER (68.18%), EM-VFER demonstrates a
significant 6.06% relative gain, highlighting the effectiveness
of our proposed approach.

In alignment with previous datasets, we also present the
corresponding confusion matrix, as shown in the Figure 7.
From the matrix, it is evident that, compared to the visual-
only MMA-DFER, our method achieves superior performance
in recognizing several categories, further demonstrating the
efficacy of the proposed prompting mechanism and modality-
aware design.
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Fig. 7. Confusion matrices of the MMA-DFER method (a) and our EM-
VFER approach (b) on the Aff-wild2 dataset.

D. Micro-expression Recognition Task

1) Performance on CASME III: The experimental results
on the CASME III dataset (Table IV) demonstrate the effec-
tiveness of EM-VFER, achieving a UF1 score of 65.21% and
a UAR score of 66.90%.

TABLE IV
COMPARISON WITH THE SOTA METHODS FOR MICRO-EXPRESSION
RECOGNITION TASK ON CASME III. THE BEST RESULTS ARE IN BOLD,
THE SECOND-BEST RESULTS ARE UNDERLINED, AND * INDICATES
RESULTS OBTAINED USING ONLY THE VISUAL MODALITY.

Method Modality UF1 UAR
RCN [79] Visual 38.93  39.28
STSTNet [60] Visual 3795 37.92
FeatRef [80] Visual 3493 34.13
U_BERT [57] Visual 56.04 61.25
HTNet [81] Visual 57.67 54.15
MMA-DFER* [43] Visual 54.02  52.61
EM-VFER Visual 65.21  66.90

This marks significant performance improvements, with
relative gains of 16.36% in UF1 and 9.22% in UAR compared
to the state-of-the-art u_BERT [57]. EM-VFER also outper-
forms the visual-only MMA-DFER [43], which achieved UF1
and UAR scores of 54.0% and 52.6%, respectively. These
results highlight EM-VFER’s ability to capture subtle micro-
expressions and its superior capacity for extracting authentic
facial expression features. The integration of high-quality
eye movement signals and a progressive fine-tuning strategy
further enhances its capability to discern complex emotional
states.
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Figure 8 shows EM-VFER’s superior performance over
MMA-DFER [43] on the CASME III dataset, with higher
recognition rates in “Surprise,” “Positive,” and “Negative”
categories. The darker regions highlight its accuracy in cap-
turing subtle expression changes. Eye movement guidance and
fine-tuning reduce misclassifications, showcasing EM-VFER’s
effectiveness in micro-expression recognition and emotional
feature extraction.
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Fig. 8. Confusion matrices of the MMA-DFER method (a) and our approach
(b) on the CASME III dataset. Sur, Pos, Neg are the abbreviations of the
corresponding labels. The right-side legend displays the relationship between
color and prediction accuracy; deeper colors indicate higher accuracy.

2) Performance on CASME II: Table V presents a com-
parative evaluation of EM-VFER on the CASME II dataset,
showing superior performance with a UF1 of 90.53% and a
UAR of 92.33%, outperforming all other methods. Notably,
EM-VFER significantly improves upon the visual-only MMA-
DFER [43] , which achieved UF1 of 89.01% and UAR of
87.5%. These results highlight EM-VFER’s higher accuracy
and consistency in capturing subtle facial expression changes.

TABLE V
COMPARISON WITH SOTA METHODS FOR MICRO-EXPRESSION
RECOGNITION ON THE CASME II DATASET. THE BEST RESULTS ARE IN
BOLD, THE SECOND-BEST RESULTS ARE UNDERLINED, AND * INDICATES
RESULTS OBTAINED USING ONLY THE VISUAL MODALITY.

Method Modality ~ UF1 UAR
OFF-ApexNet [82] Visual 87.64  86.80
Graph-TCN [83] Visual 86.48  88.71
GACNN [84] Visual 89.66  86.95
RCN [79] Visual 81.23  85.12
STSTNet [60] Visual 83.82  86.86
FeatRef [80] Visual 89.15  88.73
u_BERT [57] Visual 90.34 89.14
MMA-DFER* [43] Visual 89.01 87.50
EM-VFER (Ours) Visual 90.53 92.33

In addition, as shown in the Figure 9, EM-VFER outper-
forms the MMA-DFER [43] in classification accuracy. Its abil-
ity to capture subtle micro-expression variations in CASME
IT is enhanced by leveraging high-quality eye movement for
instructing, leading to more reliable recognition.

E. Ablation Studies and Analysis

1) Effects of Different Modules: We conducted ablation
experiments on DFEW (macro-expression) and CASME III
(micro-expression), respectivley, to evaluate the effectiveness
of key modules in our EM-VFER, as shown in Table VI.
From the table, introducing low-quality visual eye movement
information resulted in a slight decrease in WAR and UAR,
indicating that noise from such data hinders the model’s ability

-
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Fig. 9. Confusion matrices of the MMA-DFER method (a) and our EM-
VFER approach (b) on the CASMEII dataset.

to capture effective emotional features. In contrast, pre-training
with high-quality eye movement signals enhanced the model’s
ability to recognize complex facial expressions, improving
WAR from 67.15% to 73.34% and UAR from 54.34% to
62.18% on DFEW. This approach better captures the subtle
relationship between facial expressions and eye movement sig-
nals, providing a solid foundation for fine-tuning. In the fine-
tuning phase, we employed a PEML mechanism to optimize
the model, enabling it to better adapt to downstream datasets
with low-quality visual eye movement information, ultimately
improving recognition performance.

2) Different Pre-trained Models (baselines) with Our
PEML: Table VII presents the performance enhancement of
the PEML module in VFER by integrating it into various
pre-trained models (baselines). As shown in Table VII, the
PEML framework significantly enhances VFER performance
across diverse pre-trained models for both macro- and micro-
expression recognition tasks, confirming its generalizability
and adaptability. Compared to MMA-DFER [43], PEML
yields notable improvements: 16.20% in WAR and 29.10%
in UF1 on MAFW and CASME III, respectively, along with
25.07% and 25.68% in UAR across both datasets. In the CLIP
model [85], PEML achieves a 22.26% increase in WAR on
MAFW. By progressively guiding the model to learn high-
quality eye-movement features, PEML improves recognition
accuracy and generalization, even under low-quality or noisy
data, enhancing the model’s ability to extract relevant features
and improve discriminative performance.

3) Comparison of PEML with Other Domain Adaptation
Methods: To comprehensively evaluate PEML’s performance
in adapting to low-quality eye movement data, particularly in
comparison with existing mainstream domain adaptation meth-
ods, we conducted the following comparative experiments,
with results summarized in Table VIII. It shows that PEML
outperforms other domain adaptation methods on the MAFW
and CASME III datasets, achieving the highest WAR and UAR
scores, demonstrating its superior robustness in adapting to
low-quality downstream eye movement data.

4) Different Computation Methods for Eye Movement Dis-
tributional Features £ in PEML: Table IX shows the impact
of various methods for computing eye movement distribu-
tional features £ (see Eq. 10) in PEML, including multivari-
ate_normal [89] and Mean methods [90] . The multivariate
normal method fits high-quality eye movement signals to a
Gaussian distribution and uses the probability density function
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TABLE VI
THE IMPACT OF DIFFERENT MODULES. VIDEO-BASED FACIAL EXPRESSION: USING ONLY FACIAL VIDEO DATA FOR VFER; LOW-QUALITY EM: VISUAL
EYE MOVEMENT INFORMATION ON FACIAL VIDEOS VIA CURRENT MODELS; EMER PRE-TRAINING: PRE-TRAINING ON THE EMER DATASET; PEML
FINE-TUNING: FINE-TUNING ON DOWNSTREAM DATASETS VIA PROPOSED PEML METHOD.

Video-based Low-quality EMER

PEML

DFEW (Macro) CASME III (Micro)

Facial Expression Visual EM Pre-training  Fine-tuning WAR UAR UF1 UAR

v 67.15 5434 5261 54.02

v v 66.78  52.89  50.51 53.23

v v v 7334 62.18  63.50 63.91

v v v v 76.43 6583  65.21 66.90
TABLE VII dimensional contexts, making it more suitable for distinguish-

THE IMPACT OF DIFFERENT PRE-TRAINED BASELINES WITH OUR PEML.

MAEW (Macro)  CASME I (Micro)

Basline

WAR UAR UF1 UAR
CLIP [85] 19.36 14.33 9.99 17.48
CLIP [85]+PEML 23.67 17.39 12.32 19.67
NORM-TR [86] 48.19 44.1 35.04 39.00
NORM-TR [86]+PEML 53.2 48.80 38.14 43.60
MMA-DFER 49.68 35.30 50.51 53.23
MMA-DFER [43] +PEML  57.73 44.15 65.21 66.90

TABLE VIII

COMPARISON OF PEML WITH OTHER DOMAIN ADAPTATION METHODS

MAFW (Macro) CASME III (Micro)

Baseline

WAR UAR UF1 UAR
Baseline (No DA) 73.34 62.18 63.50 63.91
Adversarial Alignment [87]  73.08 64.79 64.15 65.27
Contrastive Learning [88] 72.19 64.37 64.03 62.77
PEML (Ours) 76.43 65.83 65.21 66.90

(PDF) to calculate weights W(Ej,é’) While this method
leverages distribution characteristics to improve model accu-
racy, noise and data complexity may reduce its effectiveness.
In contrast, the mean method computes the average of high-
quality features and uses the inverse of the Euclidean distance
to assign weights. Experimental results show that the mean
method outperforms the multivariate normal method on the
DFEW and CASME III datasets.

TABLE IX
THE IMPACT OF DIFFERENT COMPUTATION METHODS FOR EYE
MOVEMENT DISTRIBUTIONAL FEATURES £.

DFEW (Macro) CASME III (Micro)

Method
WAR UAR UF1 UAR
multivariate_normal  76.27 65.54 6498 66.19
Mean 76.43 65.83 65.21 66.90

5) Different Distance Estimation Functions dist in Eq. 11:
In this section, we evaluated the impact of various distance
computation functions dist in Eq. 11 on model performance,
as depicted in Table X. The Inverse Cosine Similarity [91]
achieved WAR and UAR scores of 76.02% and 63.52% on
the DFEW and CASME III datasets, respectively. While it
captures angular relationships well, it struggles to differentiate
samples in high-dimensional spaces. In contrast, the Euclidean
Distance method improves performance, with WAR and UAR
rising to 76.43% and 65.83%, respectively. This suggests that
Euclidean Distance better preserves the geometric structure
of the data, enabling more accurate differentiation in high-

ing subtle variations in eye movement information.

TABLE X
THE IMPACT OF DIFFERENT DISTANCE COMPUTATION METHODS dist IN
EQ. 11.
Method DFEW (Macro) CASME III (Micro)
WAR UAR UF1 UAR
Inverse Cosine Similarity — 76.02 63.52  63.70 65.70
Euclidean distance 76.43 65.83 65.21 66.90

6) Computational Cost and Model Performance Analysis:
In this section, we evaluate the computational complexity and
performance trade-offs of our proposed model compared to
several baseline methods on the EMER dataset, as summarized
in Table XI.

TABLE XI
COMPUTATIONAL COST AND MODEL PERFORMANCE ANALYSIS ON
EMER DATASET

Method Modality ~ Simple  Real-time  Params FLOPs WAR  UAR
MLP [92] v Yes No 3.8M 13.69G 3029 20.63
ResNet18 [93] v Yes No 6.3M 15.68G 3558  29.66
MMA-DFER [43] v No No 7.3M 617.73G  50.01 37.66
CLIP [85] v No No 8475M  805.80G  21.08  16.53
C3D_LSTM [94], [95] V+E Yes Yes 10.63M  5021G 4621  28.04
NORM-TR [86] V+E No Yes 1287M  63.38G 5027  30.16
Ours v No Yes 7.62M  308.86G  51.36  47.89

Our model achieves an optimal balance between accu-
racy and efficiency. While lightweight baselines ( MLP [92],
ResNet18 [93] ) are efficient, they suffer from poor accuracy.
In contrast, MMA-DFER [43] offer better performance but
at the cost of high computational overhead and lack of real-
time capability. With only 7.62M parameters, our model sup-
ports real-time inference and achieves competitive WAR and
UAR. Notably, it outperforms real-time multimodal models
like C3D_LSTM [94], [95] and NORM-TR [86] using only
visual input, highlighting its scalability and deployment ease
in resource-limited scenarios.

7) Individual sensitivity analysis: To assess whether in-
dividual differences in eye movement introduce prediction
bias, we conducted grouped experiments by gender on the
MAFW and CASME III datasets. The results are shown in
Table XILLEM-VFER shows consistent performance across
genders, demonstrating robustness to individual differences
and common real-world variations like culture, facial features,
and recording conditions.

We further examined age-related effects on model predic-
tions. Due to the narrow age range in the micro-expression
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TABLE XII
PERFORMANCE COMPARISON OF MICRO-EXPRESSION AND
MACRO-EXPRESSION RECOGNITION BY GENDER

MAFW (Macro) CASME III (Micro)

Gender
Sample WAR UAR  Sample WAR UAR
Male 5378 57.23  43.08 454 6421  65.12
Female 3794 5597  42.89 228 62.99  64.08
Male+Female 9172 56.69  43.68 682 64.79  66.34

dataset (mean 22, standard deviation 1.6), analysis was limited
to the MAFW dataset. Results are shown in Table XIILIt
shows minor performance differences across age groups, with
the 26-35 group achieving the highest WAR (57.59%) and the
46-55 group the lowest WAR (56.62%). These results indicate
that age-related eye movement differences have minimal im-
pact on EM-VFER’s predictions, demonstrating the model’s
robustness to individual variability.

TABLE XIII
PERFORMANCE COMPARISON OF MICRO-EXPRESSION BY AGE GROUP ON
MAFW
Age Group  Sample WAR  UAR
26-35 1500 57.59  43.68
36-45 1500 57.01  43.87
46-55 1500 56.62  43.01
26-55 4500 5735 4428

F. Visualization Analysis

1) Emotional Attention Visualization on Macro-expressions
and Micro-expressions: In order to gain a deeper understand-
ing of whether the model effectively utilizes key cues in
VFER, we explore the regions of interest by visualizing the
attention maps, as shown in Figure 10.
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Fig. 10. Emotional attention visualization results on Macro-expression dataset
(DFEW)(a) and Micro-expression dataset (CASME III)(b).

Preliminary analyses reveal that when the model relies
exclusively on facial expressions for recognition, it predom-
inantly attends to prominent changes in facial features, such
as the movements of the mouth and eyebrows (refer to the

first column of Figure 10(a) and Figure 10(b). While this
emphasis facilitates the identification of overt emotional states,
it may inadvertently lead to the oversight of subtle eye
movements, which are equally vital for conveying emotional
nuances. This observation underscores the potential for the
model to miss critical visual cues in the emotional recognition
process, consequently impacting its overall performance. After
applying our framework, the attention maps show improved
focus on both facial regions and subtle eye movements (second
and third columns in both figures). This enhancement allows
the model to capture a broader range of emotional cues,
boosting its accuracy in recognizing complex emotional states.
Comparing the attention maps before and after integrating the
PEML module further confirms its effectiveness in improving
the model’s sensitivity to key emotional cues, significantly
enhancing performance in both macro- and micro-expression
tasks.

2) Visualization on Expression Feature Distribution: To
better understand the feature distributions across different
facial expression categories, we applied PCA dimensionality
reduction to the emotional features fused with eye movement
and facial expression data (F‘g) from our multi-level cross-
modal fusion modules. The results for the macro-expression
dataset (DFEW) are shown in Figure 11(a), while those for the
micro-expression dataset (CASME III) are presented in Figure
11(b).

Anger o Fear o NeutralsHappiness o Sadness « Disgust « Surprise

w/o MERT & PEML w/o PEML ours

(a)

® Positive © Negative » Surprise

w/o PEML ours

(b)

w/o MERT & PEML

Fig. 11. Emotional feature visualization with and without key modules in our
framework on the Macro-expression dataset (DFEW)(a) and Micro-expression
dataset (CASME III)(b).

In the experiments, removing the PEML module resulted in
a more scattered distribution of emotional features, blurring the
boundaries between categories. This highlights the importance
of PEML, which enhances eye movement patterns in visual
expression features, enabling clearer inter-class separation.
Further removal of the MERT module caused a significant
loss in the structural integrity of the feature distribution,
weakening the clustering effect of facial expression categories
and increasing overlap. This suggests that the MERT module,
by leveraging multimodal data, strengthens emotional feature
extraction and provides high-quality eye movement signals that
guide PEML. These findings underscore the crucial role of the
PEML and MERT modules in improving recognition accuracy
and enhancing category distinction.
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3) Visualization on Eye-movement Feature Distribution:
To investigate the distribution characteristics of eye-movement
features across different facial expression categories, we ap-
plied our method with and without the pre-trained MERT
and instructed PEML modules on the DFEW and CASME
IIT datasets, using LDA [96] for visualization. Figure 12(a)
displays the results of DFEW, while 12(b) shows the results
of CASME III.
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‘ @ G
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Fig. 12. Eye-movement feature distribution on Macro-expression dataset
(DFEW)(a) and Micro-expression dataset (CASME III)(b).

The results show that adding the MERT and PEML modules
improves feature distribution, leading to more distinct and
well-separated features on both the DFEW and CASME III
datasets. The model with these modules achieves better differ-
entiation between facial expression categories, both for macro-
and micro-expression recognition, while the model without
them exhibits significant feature overlap and poor separation.
These observations highlight the key role of the MERT and
PEML modules in enhancing feature extraction, classification
performance, and generalization.

4) Visualization on Distribution Differences between Vari-
ous Eye-Movement Features: To verify that PEML learns a
distribution that more closely aligns with high-quality, device-
collected eye movement signals, we performed a comparative
analysis using the DFEW and CASME III datasets.

On the DFEW dataset, as shown in Figure 13(a), the right
side of the figure demonstrates that the L-th layer low-quality
visual eye movement features ¢ g ((W(E;, &)- PE> o E;)))
(represented in yellow) processed by EM-VFER significantly
overlap with the high-quality eye movement features ¢ (F;)
(represented in gray) extracted from the EMER dataset in
multiple regions, with peak positions being very close. This
indicates that PEML effectively aligns the distribution of low-
quality visual eye movement features with that of the high-
quality data. In contrast, the [-th layer low-quality visual eye
movement features ¢x(E}) (represented in blue) that were
processed by EM-VFER without PEML show less overlap
with the high-quality features, as shown on the left side of
Figure 13(a). This further confirms that PEML progressively
adjusts the distribution of low-quality data to make it more
closely resemble the high-quality eye movement signals col-
lected by the device, thereby providing more reliable input
features for the VFER task.

High-quality EM feature
Low-quality EM feature w/o PEML
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Fig. 13. Distributions of eye-movement features extracted by different
methods on Macro-expression dataset (DFEW) (a) and Micro-expression
dataset (CASME III) (b)

In addition, as shown in Figure 13(b), the distribution differ-
ences of eye movement information in the CASME III dataset
further validate the effectiveness of PEML. Despite the low-
quality visual eye movement features processed by EM-VFER
in the CASME III dataset showing three peaks with reduced
peak heights (shown on the right), this indicates that PEML
enhances the diversity of the data. Although overall feature
performance may decline, this diversity provides valuable
information for the model, helping it adapt to different visual
tasks. This suggests that PEML can improve the performance
of low-quality data, making it better reflect complex situations
and align more closely with high-quality device-collected data.

5) Visualization on Loss Performance Curves: Figure 14
illustrates the loss performance curves of the model on the
DFEW and CASME III datasets as key modules are pro-
gressively integrated into the EM-VFER framework. These
curves highlight the impact of each module on the model’s
convergence speed and stability.
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Fig. 14. Loss performance curves on DFEW and CASME III, respectively.
(D: Video-based Facial Expression; @): Low-quality Visual EM; 3): EMER
Pre-training; @: PEML Fine-tuning.

As shown in Figure 14(a) for the DFEW dataset, the models
that rely solely on facial video data or incorporate low-quality
visual eye movement information exhibit lower initial loss
values and show a more slow decline during training. In
contrast, our method, which is pre-trained with high-quality
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eye movement signals from the EMER dataset, achieves faster
convergence, as evidenced by a more rapid decrease in the loss
curve. For the CASME III dataset (Figure 14(b)), the initial
loss values are higher for all methods except ours. After pre-
training with high-quality eye movement signals from the pre-
trained EMER dataset, the other methods exhibit a faster loss
reduction than when using low-quality visual eye movement
information. However, our approach consistently outperforms
the others, demonstrating both a faster and more stable loss
reduction, which highlights its superior convergence speed and
overall performance.

6) Case Visualization and Analysis: To comprehensively
evaluate EM-VFER, we analyze both correct and incorrect
predictions, focusing on rare or ambiguous expressions (see
Figure 15). In Figure 15(e), the subject’s eye movements
exhibit prolonged fixations with few saccades, typically char-
acteristic of sadness, but the concurrent furrowed brows and
eye tension resemble anger, causing the model to misclassify
“sad” as “angry.” Similarly, in Figure 15(f), ambiguous cues
such as pupil size variation, slight brow furrowing, and down-
turned mouth corners increase the difficulty of classification. In
contrast, Figure 15(c) presents a correctly classified ambiguous
case where subtle cues, such as pupil size changes and
slight brow furrowing, are accurately interpreted, reflecting the
model’s sensitivity to fine-grained features.
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Fig. 15. Visualization of successful cases and failures. (a), (c), and (e) are
from DFEW, while (b), (d), and (f) are from CASME III.

V. CONCLUSION

In this paper, we propose a novel Eye Movement-Instructed
VFER (EM-VFER) approach that consists of two stages: the
high-quality eye movement pre-training stage and the eye
movement-instructed video data fine-tuning stage. In the pre-
training stage, we introduce an Eye Movement-assisted Multi-
modal Emotion Recognition (EMER) dataset, which is used
to train the Multi-modal Emotion Recognition Transformer
(MERT) model. This stage facilitates the extraction of mean-
ingful features from both eye movement signals and facial
video data. In the fine-tuning stage, we introduce a Progressive
Eye Movement-Instructed Learning (PEML) strategy. PEML

gradually incorporates eye movement signals into the learning
process, guiding the model to refine its understanding of VFER
cues. This fine-tuning process leverages the prior knowledge
gained from the pre-training phase, where high-quality eye
movement signals is used to inform the model’s learning.
The combination of these two stages significantly improves
feature extraction and model performance on both macro-
expression and micro-expression recognition tasks. Extensive
evaluations demonstrate that EM-VFER outperforms existing
methods, showing its promising potential for practical ap-
plications. However, we also identify challenges related to
individual differences in eye movement patterns and emotional
expressions, as well as unknown and diverse noise in open-
world environments. In future work, we plan to integrate the
multimodal foundation large model and causal inference mod-
els to enhance the robustness of eye movement signal learning
in open environments, aiming to improve the generalizability
and transferability of our models across open-world scenarios.
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