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Abstract

Facial expression recognition (FER) is challenging because the appearance of an

expression varies significantly depending on head pose and inter-subject charac-

teristics. With existing techniques, it is often difficult to learn both pose-aware

and identity-invariant representations of facial expressions effectively due to

the complex distribution of intra-class variation and similarity caused by these

two factors. In this study, we propose a dynamic multi-channel metric learning

network for pose-aware and identity-invariant FER, called DML-Net, which can

reduce the effects of pose and identity for robust FER performance. Specifically,

DML-Net uses three parallel multi-channel convolutional networks to learn fused

global and local features from different facial regions. Then it uses joint em-

bedded feature learning to explore identity-invariant and pose-aware expression

representations from fused region-based features in an embedding space. DML-

Net is end-to-end trainable by minimizing deep multiple metric losses, FER

loss, and pose estimation loss with dynamically learned loss weights, thereby

suppressing overfitting and significantly improving recognition. We evaluate

DML-Net on three widely-used multi-view facial expression datasets, namely,

KDEF, BU-3DFE, and Multi-PIE, as well as a wild dataset SFEW2.0. Extensive
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experiments demonstrate that our approach outperforms several other popular

methods with accuracies of 88.2% on KDEF, 83.5% on BU-3DFE, 93.5% on

Multi-PIE, and 54.36% on SFEW.

Keywords: multi-view facial expression recognition; pose-aware;

identity-invariant; multi-channel metric learning; dynamic

weight; multi-task learning

1. Introduction

Facial expressions are an important nonverbal way for human beings to con-

vey emotions and intentions. Automated facial expression recognition (FER)

is crucial to applications involving human-computer interaction, such as emo-

tion robots, automated customer service, interactive games, and driver fatigue5

monitor systems. Despite tremendous progress in the past decade [1], most

existing FER methods focus on near-frontal face evaluation in a constrained en-

vironment. Robust multi-view FER remains challenging because of pose varia-

tion and inter-subject variation (i.e., identity-specific attributes). These factors

cause two difficulties. First, learning representations good for distinguishing dif-10

ferent expressions rather than different poses and identities is difficult; second, a

great deal of expression-related information is lost because of self-occlusion and

inter-subject variation due to pose and identity variation. Since facial expres-

sions often involve only subtle facial muscle movements, expression-unrelated

features, and expression-related features couple nonlinearly, degrading FER per-15

formance.

Existing methods address the above challenges to improve expression-related

features’ learning regarding pose variation and individual identity variation. For

pose variation, existing methods for multi-view FER are generally divided into

three categories: pose-robust feature extraction, pose-specific classification, and20

pose normalization. Pose-robust features depend on well-designed hand-crafted

features or local feature points [2, 3], which have a limited effect on nonlinear

facial texture distortion. Pose-specific classification requires a large amount
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of data to train a classifier for discrete poses that works synchronously with

the expression classifier [4, 5]. Pose normalization typically synthesizes a two-25

dimensional (2D) or three-dimensional (3D) frontal facial image from a postural

facial image through a generative adversarial network (GAN) before expression

classification.

Existing methods can be divided into two broad categories for individ-

ual identity variation: GAN-based and metric-learning-based methods. GAN-30

based methods usually generate new facial expression images through adversar-

ial learning to reduce the effect of identity features [6, 7]. Metric-learning-based

methods incorporate metric learning schemes within a convolutional neural net-

work (CNN) framework for clustering embedded representations of facial expres-

sions [8, 9]. Although these methods have achieved promising results for FER,35

most of them address the two interference factors separately. However, pose

and identity variations have a joint effect on FER performance and are difficult

to separate.

To deal with these limitations and produce facial expression representations

that have greater discriminating power regarding both pose and identity vari-40

ations, we propose a novel dynamically multi-channel metric network for pose-

aware and identity-invariant FER, termed DML-Net. Fig. 1 illustrates the

motivation for our work. In Fig. 1(a) and 1(b), x1 and x2 represent samples

with different poses and the same facial expression (Happiness), whereas x3 and

x1 represent samples with different facial expressions (Afraid and Happiness)45

and the same pose. Similarly, in Fig. 1(c) and 1(d), x4 and x5 represent sam-

ples with different identities and the same expression (Happiness), whereas x6

and x4 are samples with different facial expressions (Sadness and Happiness)

and the same identity. f(xi) represents the facial expression representation ex-

tracted from the ith sample. D1, D2, D3 and D4 denote the Euclidean distances50

between the samples’ expression representations. In our work, DML-Net aims

to learn more discriminative expression-related features, even those in which

facial movement is subtle; this means that different facial expressions should be

farther apart in the feature space. However, features resulting from pose and
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identity differences typically have higher discriminating power than those re-55

sulting from differences in facial expression; in Fig. 1(a) and 1(c), D1 > D2 and

D3 > D4 in the feature space. Hence, to eliminate the effect of pose and iden-

tity variation, DML-Net clusters instances of the same expression with different

poses and identities while enlarging the distance between different expressions

in the embedding feature space. That is, features with the same expressions60

are closer to each other, even if they have different poses or identities. Features

with different expressions are far away from each other, even if they have the

same pose or identity: in Fig. 1(b) and 1(d), D1 < D2 and D3 < D4 in the

embedding feature space.

Fig. 2 provides an overview of DML-Net for pose-aware and identity-invariant65

FER. It consists of two stages: five-tuple set construction and dynamically

multi-channel metric learning. In the first stage, inputs are constructed as five-

tuple input. That is, each input contains five samples: a shared anchor sample,

a pose-based positive sample (i.e., an image with the same expression as the

anchor, but a different pose), a pose-based negative sample (i.e., an image with70

the same pose as the anchor, but a different expression), an identity-based pos-

itive sample (i.e., an image of a different subject with the same expression as

the anchor), and an identity-based negative sample (i.e., an image of the same

subject as the anchor, but with a different expression).

In the second stage, DML-Net learns pose-aware and identity-invariant ex-75

pression representations in the embedding space. This stage has three compo-

nents: multi-channel feature extraction (MFE), jointly embedding feature learn-

ing (JEFL), and dynamically weighted multi-task learning (DWML). Specifi-

cally, MFE uses three parallel Resnet50 [10] models to extract multi-channel

convolutional features from three different face regions: the mouth region, the80

eye region, and the entire face. Then, the extracted region-based multi-channel

fusion features are fed into the JEFL module for further learning and clustering

of identity-invariant and pose-aware facial expression representations in the em-

bedding space. Here, the embedded features with the same expression category

are closer to each other, whereas those with different expression categories are85
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Figure 1: Illustrations of representations in feature space learned by (a) existing methods in

pose variation, (b) DML-Net in pose variation, (c) existing methods in inter-identity variation,

and (d) DML-Net in inter-identity variation. f(xi) is the facial expression representation

extracted from the ith sample. D1, D2, D3 and D4 denote the Euclidean distances between

the expression representations of the samples.

farther apart. Finally, the DWML module simultaneously focuses pose estima-

tion and FER tasks by minimizing the deep multiple metric losses, the FER

loss, and pose estimation loss, with dynamically learned loss weights, which

suppresses the overfitting, and vanishing gradient problems and significantly

improves recognition.90

This study is an extension of a paper presented at the conference FG2018

[11]. The contributions of this study that differ from those of the conference

study are as follows:

1) In the conference study, we proposed an end-to-end trainable MPCNN
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Figure 2: Overview of DML-Net for jointly pose-aware and identity-invariant facial expression

recognition. (a) A constructed five-tuple set with five samples in each group. (b) Dynamically

multi-channel metric learning. In the multi-channel metric learning stage, MFE extracts

global, and local features; then, JEFL aims to map the original features into an embedding

feature space so that features with the same expression tend to form clusters, whereas those

with different expressions are far apart. Finally, DWML performs three tasks, namely, metric

learning, pose estimation, and expression recognition by optimizing dynamic weighting multi-

losses. The network aims to acquire more discriminative pose-aware and identity-invariant

expression representations by clustering features in the embedding space.

with three components: MFE, multi-scale high-layer feature fusion, and95

pose-aware recognizer. This study proposes an end-to-end trainable net-

work called DML-Net with three components, MFE, JEFL, and DWML,

which jointly recognize facial expressions and estimate poses via multi-

channel metric learning. In contrast to the multi-scale feature fusion in

MPCNN, DML-Net incorporates a new JEFL module into a multi-task100

learning framework to acquire the most discriminative expression-relevant

representations by clustering fusion features in the embedding space. Our

proposed DML-Net is, to the best of our knowledge, the first FER method

using deep metric learning (DML) for handling both identity and head

pose variations.105

2) This work proposes a new JEFL module for further learning identity-

invariant and pose-aware facial expression representations via clustering

in an embedding space.
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3) This work introduces a joint multi-loss function with dynamic loss weights

to optimize the entire network and prevent overfitting in the training pro-110

cedure.

4) Evaluation on three typical and challenging multi-view facial expression

datasets shows the advantages of DML-Net over existing state-of-the-art

methods.

The rest of this paper is organized as follows: Section 2 introduces related115

work. Section 3 presents our DML-Net approach for FER. Section 4 discusses

our experimental results using publicly available datasets. Section 5 concludes

this paper.

2. Related Work

In this section, we mainly discuss methods related to FER, DML, and multi-120

task network architectures.

Facial expression recognition: As elaborated in the surveys [1], FER

technology has advanced considerably over the past decade. However, per-

forming pose-adaptive and identity-invariant FER with limited training data in

spontaneous environments remains a challenge. Benefiting from advancements125

in deep learning (DL) in recent years, more effective methods are emerging to

deal with pose and identity issues; these have achieved promising results in some

settings. Jung et al. [3] trained two CNNs jointly with facial landmarks and

color images to reduce the effects of poses. The works [2, 4] employed a deep

neural network (DNN) with SIFT. For the multi-view facial expression dataset130

BU-3DFE, GAN-based approaches have also yielded good results. Zhang et al.

[12] proposed an end-to-end model for pose-aware FER based on synthesizing

multi-view facial images simultaneously using a GAN and achieved an average

accuracy of 81.20%. Zhang et al. [13] combined facial landmarks with a GAN

for FER and achieved an average accuracy of 81.95%. FERAtt [14] further im-135

proved the accuracy using an attention mechanism on the BU-3DFE dataset.

Identity-adaptive generation (IA-gen) [6] generated six facial expressions with
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the same subject from any input image using six cGANs and employed a regular

CNN branch for FER. De-expression residue learning (DeRL) [7] learned resid-

ual person-independent expression information by generating a standardized140

neutral face. Exchange-GAN [15] separated identity and expression features us-

ing groups of GANs. IPFR [16] proposed a GAN-based structure and achieved

good results on the SFEW in-the-wild dataset for a more challenging FER task

in-the-wild. Hu et al. [17] realized facial de-expression and expression compo-

nent extraction on the unpaired in-the-wild datasets based on DeRL [7]. Shao145

et al. [18] proved that a shallow CNN could also achieve good scores for FER

in-the-wild. However, GAN-based models are costly and depond on the amount

of training data. In general, most existing methods focus only on one of the two

factors. Their FER performance depends heavily on the results of their pose

or identity estimation or the quality of the generated samples. Therefore, it is150

necessary to build an end-to-end network for multi-view FER with full use of

limited data and synthetically consider both pose and identity variation.

DML: Unlike traditional metric learning, DML uses deep learning tech-

niques to learn nonlinear embedding data features in the embedding space.

Many researchers have been interested in combining softmax loss and DML for155

FER in the last few years. IL-CNN [19] proposed the island loss to learn more

discriminative deep features by compacting clusters and simultaneously push-

ing clusters away from each other. These methods are based on global features

and do not consider specific factors in FER. Liu et al. [9] and [20] introduced

identity-invariant FER in metric learning. The method proposed by [9], based160

on (N +M) tuples, is an improvement of the triplet loss [21]; it optimizes the

loss function by pulling M positive examples close to the anchor and pushing N

negative examples away from the anchor with a dynamic margin. [20] proposed

a hard negative generation network, combining GAN with identity-invariant

(N +M) tuples [9]. These DML methods only consider identity-aware feature165

learning in an embedding space but do not consider pose variation. Inspired by

this, we propose a new JEFL module to simultaneously diminish the impacts of

pose and identity variation.
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Multi-task networks: Since information is shared among related tasks,

multi-task learning has been introduced to solve problems caused by various fac-170

tors in FER, such as poses, identities, and illumination. The identity-invariant

CNN (IACNN) [8], based on a distance metric, used a pair of images as input

data and learned features for identity-invariant FER by developing two iden-

tical sub-CNNs for expression-sensitive constructive loss and identity-sensitive

constructive loss, respectively. The multi-signal CNN (MSCNN) [22], which is175

similar to [6], not only used two images as input data but also employed cross-

entropy loss and identity-sensitive constructive loss by the same full-connection

layer in a unified network. These works usually use fixed loss weighting param-

eters or train all tasks equally, which can easily result in overfitting and are

time-consuming. Generally, adaptive dynamic weights (ADW) (i.e., Zheng et180

al. [23]) will be more effective. To address this problem, inspired by [24], we

introduce a DWML into the framework, adopting an adaptive weighting method

more effective training.

3. Methodology

This section presents a novel dynamically multi-channel metric network for185

pose-aware and identity-invariant FER (DML-Net), which aims to diminish the

effect of both pose and inter-subject variation for better FER performance.

We first introduce five-tuple set construction for learning the embedding space,

then describe the architecture, and implementation details of DML-Net in the

training and inference procedures.190

3.1. Five-tuple set construction

Instead of the traditional triplet construction used in metric learning, we

propose a five-tuple set construction strategy to simultaneously learn informa-

tion about poses and identities, i.e., the embedding distances of pose variation

and identity variation. As shown in Figs. 2 and 3, a five-tuple contains a195

pose-based triplet and an identity-based triplet with a shared anchor sample.
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Figure 3: Example of a five-tuple. It contains a pose-based triplet and an identity-based

triplet, including a negative sample, a positive sample, and a shared anchor sample. The

constructed five-tuples will be fed into DML-Net, where positive images will be pulled closer

to the anchor in the embedding space, whereas the negative images are pushed away from the

anchor.

When using random sampling for each five-tuple, due to an imbalance of posi-

tive and negative facial expression samples in the training data, the number of

positive samples is significantly less than the number of negative samples in a

training mini-batch. This will make the network ignore large absolute positive200

distances during training. The five-tuple construction strategy is applied before

each training epoch to address this imbalance problem and equalize the number

of positive and negative samples.

Algorithm 1 shows the details of the five-tuple set construction strategy.

Formally, given a shared anchor sample xi, we first define and find another205

four samples in the training set: xpose+
i (the pose-based positive sample of xi),

xpose−
i (the pose-based negative sample of xi), xid+

i (the identity-based positive

sample of xi), and xid−
i (the identity-based negative sample of xi). These will

form a five-tuple set. We then repeat the process, traversing all samples until

no new five-tuple set can be found. Finally, we construct the five-tuple set as210

follows.

An example of a constructed five-tuple set is shown in Fig. 3. x1 repre-

sents the shared anchor sample, with pose-based triplet containing xpose+
1 and
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xpose−
1 and identity-based triplet containing xid+

1 and xid−
1 . Points e(·) are the

embedding representations of the samples learned by DML-Net. Dpose+ and215

Did+ are the distances between the images of x1 and the two positive samples

in the embedding space, whereas Dpose− and Did− are the distances between

the images of x1 and the two negative samples. DML-Net reduces Dpose+ and

Did+ while increasing Dpose− and Did− in the embedding space.

Algorithm 1: Five-tuple set construction strategy

Input:

the original dataset S: {Sample(xi, y
e
i , y

p
i , y

s
i )}Mi=1;

M : the number of images in a dataset; i, j: the iterator index;

xi: the ith sample; yei : expression label of xi;

ypi : pose label of xi; ysi : identity label of xi;

initialized an empty set T of five-tuples.

1. shuffle S

2. For each xi in S do

3. if ∃xj ∈ S, yei = yej and ypi 6= ypj then: xpose+
i ←xj

4. if ∃xj ∈ S, yei 6= yej and ypi = ypj then: xpose−
i ←xj

5. if ∃xj ∈ S, yei = yej and ysi 6= ysj then: xid+
i ←xj

6. if ∃xj ∈ S, yei 6= yej and ysi = ysj then: xid−
i ←xj

7. if all of xpose+
i , xpose−

i , xid+
i and xid−

i exsit then:

8. put them into a five-tuple with and move the five samples to T

9. update S

10. end

11. end

Output

the set T of N five-tuples: {Tuple(xi, x
pose+
i , xpose−

i , xid+
i , xid−

i )}Ni=1

3.2. Network architecture220

In this section, we first introduce the overall architecture of DML-Net with

its three main components, then describe the learning process of each component
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Figure 4: The architecture of DML-Net, with three components: (a) MFE, (b) JEFL, and (c)

DWML. First, given a facial sample from the five-tuple set as the input, three parallel sub-

CNNs are used to extract the combined global and local facial features. Second, JEFL maps

fused features to the embedding space to learn pose-aware and identity-invariant embedding

features. Finally, DWML performs joint FER, pose estimation, and embedding distance

calculation by minimizing the FER loss, pose estimation loss, and deep multiple metric losses

(pose-based triplet loss and identity-based triplet loss) with dynamic weights.

and the optimization of the entire network in detail.

3.2.1. DML-Net framework

The overall architecture of the proposed network is illustrated in Fig. 4. As225

described above, DML-Net consists of three parts: MFE, JEFL, and DWML.

Specifically, MFE uses three parallel convolutional networks to learn fused global

and local features from different facial regions; then, JEFL is used to learn

further identity-invariant and pose-aware expression representations from the

fused region-based features in an embedding space. Finally, DWML jointly230

calculates feature distances, recognizes facial expressions, and estimates head

poses by minimizing the deep multiple metric losses, the FER loss and pose-

estimation loss with dynamically learned loss weights.

3.2.2. MFE

Unlike the traditional pre-trained CNN backbone for feature extraction,235

MFE uses three parallel sub-CNNs to extract multi-channel convolutional fea-

tures from different facial regions. We want a small-scale feature extractor that
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can extract local features from smaller facial regions. However, we also want a

large-scale feature extractor that can exploit detailed global features from the

entire face to increase accuracy. For this goal, we train separate multi-channel240

convolution feature extractors, using Resnet50 [10] as the backbone for different

facial regions. The input data are cropped and sent into each channel sub-CNN,

making feature maps more efficient and robust to limited training data. We let

(M1;M2;M1) represent the three channel sub-CNNs; they are defined as follows.

The first channel, M1, for the entire face: M1 is used to learn global245

features of the whole face. It first standardizes the input data and resizes the

data to ×224. Then, the standardized data are sent into first sub-CNN to

extract global features.

The second channel, M2, for the eye region: M2 is used to learn local

features from the eye region. Based on the resized data from the first channel,250

M2 first crops the eye region, approximately the uppermost third of the face,

and then sends the cropped data to the second sub-CNN to extract features.

The third channel, M3, for the mouth region: M3 is used to learn

local features from the mouth region. Based on the resized data from the first

channel, M3 first crops the mouth region, approximately the lowest third of the255

face, and then sends the cropped data to the third sub-CNN to extract features.

To enhance the representation ability of the features obtained from limited

training data, we join global and local features using two feature fusion layers.

The fusion procedure is detailed in Algorithm 2. We first extract multi-channel

features using three sub-CNNs, as described above. Then, in the first fusion260

layer, p1 and f1 are computed for local feature representation from v2 and

v3 by connection and activation, respectively. Finally, the second fusion layer

improves the feature representation from the global feature vector v1. The first

fusion feature f1. f2 is the region-based fusion feature for output, which will

subsequently be fed into the JEFL module.265
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Algorithm 2: Joint multi-channel feature fusions

Input:

Images of the whole face, the eye region, and the mouth region;

W : weight matrix; b: bias vector;

1. extract feature vectors in each sub-CNN: vi, with i = {1, 2, 3}

2. fuse local features (eye and mouth regions) and activate in the first

fusion layer:

p1 = Connect(v2, v3)

f1 = Relu(p1W 1 + b1)

3. fuse global features and local features and activate in the second fusion

layer:

p2 = Connect(v1, f1)

f2 = Relu(p2W 2 + b2)

Output

the fused features f2

3.2.3. JEFL

To learn the identity-invariant and pose-aware facial expression representa-

tions in the embedding space, the JEFL component maps region-based features

fused by the MFE component to the embedding features and cluster the embed-

ding features according to joint pose-based and identity-based triplets simulta-270

neously. As shown in Fig. 4(b), the joint clustering operations in the JEFL

module can effectively reduce the effect of pose and identity variation based on

the similarity between embedding features.

To measure the similarity between embedding features, we introduce the

squared Euclidean distance. Given two facial expression images x1 and x2,

e(x1) and e(x2), respectively, denote the embedding representations of x1 and

x2 learned by JEFL. The squared distance between x1 and x2 in the embedding

space is defined as

D(e(x1), e(x2)) = ‖e(x1)− e(x2)‖22. (1)
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To reduce the distances between the anchor and its positive samples, JEFL

designs the pose-based triplet loss Lpose and the identity-based triplet loss Lid

to cluster the shared anchor with its pose-based positive sample and identity-

based positive sample in the embedding space. Due to the complex distribution

of intra-class variation and inter-class similarity in FER, using the conventional

triplet loss may not yield satisfactory performance. Therefore, instead of the

conventional triplet loss, we introduce an online multiple triplet loss within a

mini-batch and select the hardest positive/negative samples to compute the

online distance loss. Taking pose-based triplets as an example, given an anchor

xi with P pose-based positive samples and N pose-based negative samples,

we calculate the hardest pose-based positive distance DHP+
i between xi and

its farthest pose-based positive sample, and the hardest pose-based negative

distance DHP−
i between xi and its nearest pose-based negative sample. That

is, the quantities DHP+
i and DHP−

i are defined as follows:

DHP+
i = maxD(e(xi), e(x

pose+
p )), p = 1, 2, ..., P, (2)

DHP−
i = minD(e(xi), e(x

pose−
n )), n = 1, 2, ..., N, (3)

where P and N represent the number of pose-based positive and negative sam-

ples in the mini-batch, respectively. With M anchors in a mini-batch, the

pose-based triplet loss Lpose is calculated as follows:

Lpose =

M∑
i=1

(mpose +DHP+
i −DHP−

i ), (4)

where mpose indicates the minimum margin values for pose-based triplets, which

force the negative samples to be a certain distance away from the positive sam-275

ples.

The identity-based triplet loss Lid is calculated in the same way as Lpose.

Given the shared anchor xi, DHI+
i denotes its hardest identity-based positive

distance and DHI−
i denotes its hardest identity-based negative distance. With

M anchors in a mini-batch, Lid is defined as

Lid =

M∑
i=1

(mid +DHI+
i −DHI−

i ), (5)
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where mid represents the minimum margin values for identity-based triplets.

The deep multiple metric loss Ltriplet is defined as a combination of the

pose-based triplet loss and identity-based triplet loss:

Ltriplet = Lpose + Lid. (6)

Since pose and identity variation have the same importance, we set the

weight of each loss type as 1. When Ltriplet is reduced, embedding features with

the same facial expression move closer to the cluster center, whereas embedding280

features with different expressions move away from each other. Thus, JEFL can

learn pose-aware and identity-invariant embedded expression representations.

3.2.4. DWML

To improve FER performance and suppress overfitting during training, we

introduce DWML, which jointly recognizes facial expressions and estimates head285

poses based on multi-channel metric learning. As shown in Fig. 4(c), FER

branch and head pose estimation (HPE) branch have similar structures: each

uses a fully connected layer to extract high-dimensional features, then classifies

the features using the softmax function. DWML simultaneously minimizes the

deep multiple metric losses, the FER loss, and pose-estimation loss.290

In traditional multi-task learning, how to set the loss weight for each task is

an open problem. To solve this problem, DWML employs a dynamic weighting

strategy to adaptively assign weights to each task’s loss to balance the impor-

tance of the tasks. It suppresses overfitting during training; [24] inspired this

idea. The multi-task objective function in DWML includes a weighting expres-

sion cross-entropy loss Lecls, a weighting pose cross-entropy loss Lpcls, and a

weighting deep multiple metric loss Ltriplet; it is defined as

L = λ1L
ecls + λ2L

pcls + λ3L
triplet, (7)

where λ1, λ2 and λ3 are the loss weights of the tasks, which are adaptively

calculated in each mini-batch. Based on the changes in the importance and

interactions of the task loss types during training, the multiple joint losses are
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balanced and re-weighted via dynamic learning of the loss weights, which sup-

presses the problems of overfitting and gradient vanishing. In this paper, for

k = 1, 2, and 3, λk is calculated as

λk(t) =
K exp(ωk(t− 1)/T )∑

i exp(ωi(t− 1)/T )
, ωk(t− 1) =

Lk(t− 1)

Lk(t− 2)
, (8)

where ωk(·) denotes the relative loss descent rate, t represents the iterator in-

dex, and T and K represent the adjusters. λk approaches 1 as T increases;

this controls the smoothness of weight distribution. The factor K ensures that∑
λk(t) = K. In our experiments, ωk is calculated from the average loss of five

mini-batches.295

In summary, DWML can jointly perform FER and pose estimation based

on significant discriminative expression representations in the embedding space.

Furthermore, it can effectively suppress overfitting problems using an ADW

strategy based on online loss values in the training procedure.

4. Experiments300

4.1. Datasets and settings

We perform evaluations on four multi-view public datasets: KDEF [25], BU-

3DFE [26], Multi-PIE [27] and SFEW2.0 [28]. Some samples from these datasets

are shown in Fig. 5.

KDEF is a multi-view facial expression dataset consisting of two groups of305

images depicting 70 individuals (35 females and 35 males) displaying seven facial

expressions (Anger (AN), Disgust (DI), Afraid (AF), Happiness (HA), Sadness

(SA), Surprise (SU), and Neutral (NE)) under five pan angles (−90◦, −45◦, 0◦,

45◦, and 90◦).

BU-3DFE is a multi-view facial expression dataset containing images of 100310

individuals (56 females and 44 males) displaying six facial expressions (AN, DI,

Fear (FE), HA, SA, and SU) under nine pan angles (−90◦, −60◦,−45◦, −30◦,

0◦, 30◦, 45◦, 60◦, and 90◦).

Multi-PIE is a multi-view facial expression dataset containing images of 337

individuals with varying illuminations in a controlled setting. We use partial315
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Figure 5: Examples of facial expression images from the datasets used in our experiment: (a)

KDEF, (b) BU-3DFE, (c) Multi-PIE, and (d) SFEW

images displaying six facial expressions (NE, Smile (SM), SU, Squint (SQ), DI,

and Scream (SC)) captured under five pan angles (−30◦, −15◦, 0◦, 15◦, and

30◦).

SFEW2.0 is an in-the-wild facial expression dataset, which was the bench-

mark data for the SReco sub-challenge in EmotiW 2015 [28]. It is constructed320

using static frames chosen from movies and divided into three sets: a training

set (958 images), a validation set (436 images), and a testing set (372 images).

The dataset displays seven facial expressions (AN, DI, FE, HA, NE, SA, and

SU) without pose labels and identity labels. Unlike the previous three lab

datasets, the expressions in the SFEW dataset are more realistic and diverse325

under unconstrained conditions. In addition to identity and poses, it contains

other challenging factors of FER, such as illuminations and occlusions.

Our experiments’ training and validation datasets include 3,914 images of

56 subjects from KDEF, 14,112 images of 70 subjects from BU-3DFE, 8,100

images of 293 subjects from Multi-PIE, and 958 images of the training set from330

SFEW. For testing, we use another 979 images from KDEF, 6,264 images from
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BU-3DFE, 660 images from Multi-PIE, and 436 images of the validation set

from SFEW. We guarantee that the subjects in the training and test sets are

independent. Due to the lack of identity and pose labels in the SFEW dataset,

each image’s identity was first labeled with face clustering [29]. Then, we used335

a method [30] to label the yaw angle of head poses in each image. Finally, we

manually checked and corrected labeling errors.

We implemented DML-Net using the TensorFlow DL framework. The key

training parameters involved in the work are presented in Table 1. The ta-

ble shows that the ADAM optimizer [31] was used for training with an initial340

learning rate of 0.01 and a learning rate decay of 0.8. The exponential moving

average decay was 0.9999. The weights were initialized from a zero-centered

normal distribution with a standard deviation (STD.) of 1
512 for softmax layers

and 0.04 for other FC layers. For dynamic weight calculation, we set K=2 and

T=2 empirically; these values achieved the optimum results. The mini-batch345

size was 15, which contained three different five-tuples. Since the PC branch

typically converges faster than the others, we first froze the PC branch and

trained the FER branch and the JEFL component interactively. The default

value of the epoch was 500, and training stopped when the total loss no longer

decreased. The experiments were conducted on a personal computer with In-350

tel(R) Core(TM) i7-8750H CPU at 2.20GHz and 32GB memory, and NVIDIA

GeForce GTX 1070Ti.
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Table 1: The key training parameters involved in the work.

Parameters Settings

Optimization

Optimizer ADAM

Init learning rate 0.01

Learning rate decay 0.8

Moving average decay 0.9999

STD. of initial weights
Softmax layers 1

512

Other FC layers 0.04

Dynamic weight
K 2

T 2

Mini-batch size 15

Epoch 500

4.2. Experiments with KDEF dataset

Fig. 6 shows the confusion matrices for FER and pose estimation using our

method on the KDEF dataset. The overall classification accuracy of FER is355

88.2%, and pose estimation accuracy is 99.9%. HA is the easiest to recognize

among the seven expressions, with the highest accuracy (98.6%). AN and AF

are difficult to distinguish because they involve less facial movement, and thus

the recognition rates are significantly lower.

Figure 6: Performance on the KDEF dataset: (a) the FER confusion matrix; (b) the pose

estimation confusion matrix.

We compared the performance of our method on the KDEF dataset with360

that of several state-of-the-art methods: DCNN [32], MPCNN [11], DenseNet
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[33], TLCNN [34], SURF boosting [35], and SVM [36]. Comparison results are

shown in Table 2. Compared to MPCNN [11], which has the best performance

among the other methods, our method improves FER accuracy by more than

1.3% and achieves the highest pose estimation accuracy.365

More details are provided in Table 3. The rightmost column shows the

average recognition rate for each expression across all five poses, and the bottom

row provides the average recognition rate of all expressions under each angle.

DML-Net performed well in recognizing HA and NE under all yaw angles. The

most difficult expression to recognize was AF from an angle of −90◦; this may370

be because the facial movement for this expression is extremely weak and is

easily affected by a large change in the head pose.

Since some state-of-the-art methods only use frontal images from the KDFE

dataset for FER, Table 4 shows the frontal accuracy on the KDEF dataset using

our method, CNN [37], GAN [38], AlexNet [39], and RCFN [40]. Compared to375

the state-of-the-art methods, our method also achieved an increase of up to

3.5%.

Table 2: Performance comparison on the KDEF dataset in terms of average accuracy for the

seven expressions. The best results are in bold.

Methods Features
Acc. on

Poses (%)

Acc. on

FER(%)

DML-Net Multi-channel metric learning 99.9 88.2

DCNN [32] Deep CNN features - 86.44

MPCNN [11] Fused multi-scale representations 99.8 86.9

DenseNet [33] Facial image 99.23 85.10

TLCNN [34] Action Unit Selective Feature 97.55 86.43

SURF boosting [35] SURF - 74.05

SVM [36] LBP and LGBP 86.67 70.5
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Table 3: Recognition rate (%) of all expression-angle pairs performed on the KDEF dataset.

Exp./pose −90◦ −45◦ 0◦ 45◦ 90◦ Average

Anger (AN) 78.6 82.1 82.1 89.3 74.1 81.3

Disgust (DI) 96.4 82.1 92.9 75.0 92.9 87.9

Afraid (AF) 70.4 85.7 78.6 75.0 66.7 75.4

Happiness (HA) 100.0 100.0 100.0 92.9 100.0 98.6

Sadness (SA) 85.7 89.3 89.3 85.2 85.7 87.1

Surprise (SU) 92.9 89.3 96.4 88.9 89.3 91.4

Neutral (NE) 100.0 92.9 100.0 92.9 92.9 95.7

Average 89.2 88.8 91.3 85.6 86.1 88.2

Table 4: Frontal FER Performance comparison on the KDEF dataset in terms of average

accuracy for the seven expressions. The best results are in bold.
Methods/Exp. AN DI FE HA NE SA SU Average

CNN [37] - - - - - - - 89.4

GAN [38] 80.00 88.67 97.00 85.34 96.00 87.57 90.23 89.68

AlexNet [39] 78.6 85.7 83.3 100.00 92.9 83.3 90.5 87.8

RCFN [40] - - - - - - - 91.01

DML-Net 82.1 92.9 78.6 100.00 89.3 96.4 100.00 91.3

4.3. Experiments with BU-3DFE dataset

Fig. 7 shows the confusion matrices for FER and pose estimation using our

method on the BU-3DFE dataset. Our method achieves average accuracies of380

83.5% on FER and 99.4% on pose estimation. Among the six facial expressions

in this dataset, two (HA and SU) are identified with more than 90% accuracy.

The BU-3DFE results show HA is the most accurate, 96.9%, whereas FE is

the least accurate, 55%. Furthermore, most FE instances are misclassified as

HA, and 70% are classified as FE in the misclassified HA instances. One pos-385

sible reason is that the subtle facial movements of these expressions are mainly

concentrated in the mouth area and thus are difficult to distinguish.
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Figure 7: Performance on the BU-3DFE dataset: (a) the FER confusion matrix; (b) the pose

estimation confusion matrix.

Table 5: Performance comparison on the BU-3DFE database in terms of average accuracy

across seven expressions. The best results are in bold.

Methods Features Yaw
Acc. on

Poses (%)

Acc. on

FER(%)

DML-Net Multi-channel metric learning (−90◦, 90◦) 99.4 83.5

FERAtt [14] Attention Net (−90◦, 90◦) - 82.11

IPFR [16] Identity and Pose (−90◦, 90◦) - 80.9

DenseNet [33] Dense features (−90◦, 90◦) 94.45 80.39

PC-RF [5] Heterogeneity (−90◦, 90◦) 87.15 76.1

JFDNN [3] Image and landmarks (−90◦, 90◦) - 72.5

GSRRR [2] Sparse SIFT (−90◦, 90◦) 87.36 78.9

DNN-D [4] SIFT (−90◦, 90◦) 92.26 80.1

SVM [36] LBP and LGBP (−90◦, 90◦) - 71.1

DML-Net Multi-channel metric learning (−45◦, 45◦) 99.2 84.8

IPFR [16] Identity and Pose (−45◦, 45◦) - 84.0

GAN [13] Image and landmarks (−45◦, 45◦) - 81.95

GAN [12] Convolutional features (−45◦, 45◦) 95.38 81.2

LLRS [41] Sparse features (−45◦, 45◦) - 78.64

SSE [42] Supervised super-vector

encoding

(−45◦, 45◦) - 76.60

MMGL [43] Soft Vector Quantization (−45◦, 45◦) - 76.34

Comparison results with existing state-of-the-art methods are given in Ta-
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ble 5. We performed multi-view FER on a set of discrete poses, including nine

yaw angles for comparison with FERAtt [14], IPFR [16], DenseNet [33], PC-RF390

[5], JFDNN [3], GSRRR [2], DNN-D [4] and SVM [36]; meanwhile, we used a

set, including five yaw angles for comparison with IPFR [16], GAN [13], GAN

[12], LLRS [41], SSE [42] and MMGL [43]. Note that the IPFR results [16]

were achieved without a generator. The results show that our method performs

competitively without additional sample generation, achieving the highest ac-395

curacies (99.4% and 99.2%, respectively) for pose estimation.

4.4. Experiments with Multi-PIE dataset

Fig. 8 shows the confusion matrices for FER and pose estimation using our

method on the Multi-PIE dataset. The average FER accuracy across all poses is

93.5%, which shows that our method can reduce the effect of pose variation and400

inter-identity variation. In addition, the average accuracy of pose estimation is

99.7%.

Figure 8: Performance on the Multi-PIE dataset: (a) the FER confusion matrix; (b) the pose

estimation confusion matrix.

Table 6 shows the comparison results with the state-of-the-art methods. We

thoroughly evaluate our method by comparing its performance with that of

GAN [13], Exchange-GAN [15], IPFR [16], MPCNN [11], GAN [12], DenseNet405

[33], and other state-of-the-art methods reported in [44], namely KNN, LDA,

LPP, D-GPLVM, GPLRF, GMLDA, GMLPP, MvDA, and DS-GPLVM. Note

that the IPFR [16] results were achieved without a generator. In the results,
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there is a clear gap between our method and the other methods at a head pose

angle of −15◦. Most of these methods achieved better results at −15◦, which410

may be caused by the greater deformation of training samples generated by a

GAN-based structure. However, our method outperforms the other methods

by 17.35%–1.2% in terms of FER accuracy, attributable to the pose-aware,

and identity-invariant representations learned by our model. The experimental

results show that our method achieves a more robust performance despite poses415

and identity variation.

Table 6: Performance comparison on the Multi-PIE database in terms of accuracy (%) in each

pose and average accuracy (%) across six expressions. The best results are in bold.

Methods
Poses

Average
−30◦ −15◦ 0◦ 15◦ 30◦

DML-Net 95.5 90.9 93.2 96.2 91.7 93.5

GAN [13] 92.58 93.74 89.65 89.97 94.51 92.09

Exchange-GAN [15] - - - - - 91.08

IPFR [16] - - - - - 91.3

MPCNN [11] 94.8 91.8 89.91 92.62 91.8 92.3

GAN [12] 90.97 94.72 89.11 93.09 91.3 91.8

DenseNet [33] 90 91.67 90.56 91.67 90.83 91.06

KNN [44] 80.88 81.74 68.36 75.03 74.78 76.15

LDA [44] 92.52 94.37 77.21 87.07 87.47 87.72

LPP [44] 92.42 94.56 77.33 87.06 87.68 87.81

D-GPLVM [44] 91.65 93.51 78.7 85.96 86.04 87.17

GPLRF [44] 91.65 93.77 77.59 85.66 86.01 86.93

GMLDA [44] 90.47 94.18 76.6 86.64 85.72 86.72

GMLPP [44] 91.86 94.13 78.16 87.22 87.36 87.74

MvDA [44] 92.49 94.22 77.51 87.1 87.89 87.84

DS-GPLVM [44] 93.55 96.96 82.42 89.97 90.11 90.6

4.5. Experiments with SFEW in-the-wild dataset

Fig. 9 shows the confusion matrices for FER and pose estimation using

our method on the SFEW dataset. Owing to the lack of annotations of poses
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and facial expressions in the SFEW dataset, we used the Multi-PIE dataset420

to pre-train the network for feature extraction. We then jointly trained the

entire network using the SFEW dataset to model the changes of identities and

poses effectively. The overall classification accuracy of FER is 54.39%, and the

accuracy of pose estimation is 80.0%. All pose categories achieved an accuracy

of more than 50%, especially for −15◦ (95.7%) and 15◦ (94.9%). The comparison425

results with the state-of-the-art methods are shown in Table 7. We evaluated our

method by comparing its performance with that of IACNN [8], IPFR [16], DLP-

CNN [45], DDMTL [23], RAN (Resnet18) [46], DCNN [47], IL-CNN [19], and

CNN [48]. Note that the results were achieved using single classifiers. As shown

in Table 7, our approach outperformed most of the methods, achieved 83.5%430

accuracy for HA, 67.5% accuracy for AN, and attained the highest accuracy

of 70.9% for NE and 49.1% for SU. The results show that DML-Net achieved

a balanced recognition rate in each expression and improved the total FER

accuracy as much as possible due to the jointly multi-task network architecture

based DML.435

Figure 9: Performance on the SFEW dataset: (a) the FER confusion matrix; (b) the pose

estimation confusion matrix.
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Table 7: Performance comparison on the SFEW dataset in terms of average accuracy for the

seven expressions. The best results are in bold.
Methods/Exp. AN DI FE HA NE SA SU Average

IACNN [8] 70.7 0 8.9 70.4 60.3 58.8 28.9 50.98

IPFR [16] 73.7 8.9 8.9 89.0 69.9 61.8 47.1 55.1
DLP-CNN [45] - - - - - - - 51.05

DDMTL [23] 78.23 8.05 9.67 76.3 61.9 35.8 47.44 51.21

RAN (Resnet18) [46] - - - - - - - 54.19

DCNN [47] - - - - - - - 52.5

IL-CNN [19] - - - - - - - 52.52

CNN [48] - - - - - - - 52.75

DML-Net 67.5 8.7 8.5 83.5 70.9 39.7 49.1 54.39

4.6. Ablation study and discussion

4.6.1. Effect of different components in DML-Net

In this section, we verify the impact of each component of DML-Net on its

final performance on the three datasets (KDEF, BU-3DFE and Multi-PIE). The

components we consider are MFE, HPE, JEFL, and ADW. The baseline used440

ResNet50 [10] as the backbone, with only one channel extracting global features

for FER. Table 8 shows the results of an ablation study in which the above

training components were added to the baseline framework one at a time.

Table 8: Ablation study of DML-Net. Impacts of integrating the three components (MFE,

JEFL, and DWML) into the baseline on the three datasets. The best results are in bold.

Methods
KDEF BU-3DFE Multi-PIE

Acc. on

Poses

Acc. on

FER
FPS

Acc. on

Poses

Acc. on

FER
FPS

Acc. on

Poses

Acc. on

FER
FPS

ResNet50 [10] - 83.7 64 - 78.4 136 - 90.5 98

MFE - 84.0 54 - 81.8 100 - 90.5 77

MFE+HPE 100.0 85.5 55 99.2 82.3 100 99.7 91.2 74

MFE+HPE+JEFL 100.0 86.1 52 99.2 82.6 95 99.7 93.0 78

MFE+HPE+JEFL+ADW 99.9 88.2 53 99.4 83.5 98 99.7 93.5 77

First, integrating MFE improves FER accuracy to 84.0% on the KDEF

dataset and 81.8% on the BU-3DFE dataset because MFE helps extract the445

fusion features from the entire face and expression-related local regions. How-
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ever, the improvement is almost invisible on the Multi-PIE dataset. The main

reason may be that the differences among the local facial regions between −30◦

and 30◦ in the Multi-PIE dataset are extremely small to reflect the advantages

of the enhanced fusion features. Since it has multiple channels with ResNet50450

backbones, MFE reduces processing speed on the three datasets by 16%, 26%,

and 21%, respectively.

Second, HPE improves FER accuracy by 1.5%, 0.5%, and 0.7%, respectively,

on the three datasets. We believe that HPE aids in the learning of pose-aware

representations for each region.455

JEFL continuously improves FER accuracy by 0.6%, 0.3%, and 1.8%, re-

spectively, on the three datasets. Finally, ADW brings further accuracy im-

provements of 2.1%, 0.9%, and 0.5%, respectively. The HPE results show that

ADW slightly decreases HPE (only 0.1% reduction on the KDEF dataset). This

is because of the tradeoff between the loss of HPE and the pose-aware metric460

loss. Thus, compared to the baseline, our model achieves overall FER accuracy

improvements of 4.5% on the KDEF dataset, 5.1% on the BU-3DFE dataset

and 3% on the Multi-PIE dataset. Furthermore, compared to MFE, integrating

all components can achieve the best performance with a small additional com-

putational cost (declined average 1 FPS). The proposed method can improve465

FER and pose estimation accuracy and efficiency.

4.6.2. Visualization of pose-aware and identity-invariant representations in JEFL

We visualized the expression features with different settings in 2D feature

space using the Barnes-Hut t-SNE visualization scheme [49] on the BU-3DFE

dataset to evaluate the impact of deep multiple metric learning in JEFL. The470

visualizations include the following four cases: without JEFL, with JEFL using

only pose-based triplets, with JEFL using only identity-based triplets, and with

JEFL using pose-based and identity-based triplets jointly.

Fig. 10 shows a 2D t-SNE [49] visualization of expression features without

JEFL. The features in different expression categories overlap, whereas features475

with the same expression are divided into nine subgroups corresponding to the
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nine head poses in the BU-3DFE dataset. This shows that without JEFL, pose

and inter-subject variations cause significant intra-class variation and inter-class

similarity between the extracted expression features.

Figure 10: Barnes-Hut t-SNE [49] visualization of the expression features extracted by the

FER branch in DWML without JEFL on the BU-3DFE dataset. Each color represents one

of the six emotions.

Fig. 11 shows the visualization of expression features using JEFL with only480

pose-based triplets. Compared to Fig. 10, intra-class differences are significantly

lower, and the effect of pose variation is effectively reduced. However, features

with the same expression are not sufficiently cohesive, and inter-class overlap is

still large due to the influence of identity.

Fig. 12 shows the visualization of expression features using JEFL with only485

identity-based triplets. Compared to Fig. 10, classes are more separable and

the overlap between different expression categories is reduced, indicating that

the influence of identity has been effectively reduced. However, there are still

sub-classes within each expression due to the influence of pose.
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Figure 11: Barnes-Hut t-SNE [49] visualization of the expression features extracted by the

FER branch in DWML using JEFL with only pose-based triplets on the BU-3DFE dataset.

Each color represents one of the six emotions.

Figure 12: Barnes-Hut t-SNE [49] visualization of the expression features extracted by the

FER branch in DWML using JEFL with only identity-based triplets on the BU-3DFE dataset.

Each color represents one of the six emotions.

Fig. 13 shows the visualization of expression features using JEFL with pose-490

base and identity-based triplets simultaneously. Compared to Figs. 11 and 12,

the results present better clustering, with a more compact intra-class distance

and less overlap between classes. This means that deep multiple triplet metric

learning successfully reduces the influence of both pose and identity variation,

and thus, learned embedding expression features are more discriminative.495
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Figure 13: Barnes-Hut t-SNE [49] visualization of the expression features extracted by the

FER branch in DWML using JEFL with pose-based and identity-based triplets jointly on the

BU-3DFE dataset. Each color represents one of the six emotions.

In addition, to evaluate the robustness of our DML-Net to identity variance

using the BU-3DFE dataset, from facial images classified as having HA, we

selected frontal ones for identity clustering. Fig. 14 shows the the top-10 images

of the clustering. The 31 subjects in the images are divided into four categories,

and most facial images of the same subject are clustered into the same category,500

which indicates that our model is identity-robust.

Figure 14: Top-10 images of identity clustering obtained from the class ”happiness” on the

BU-3DFE dataset.
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4.6.3. Visualization of ADW in DWML

We further compared the loss changes for each task before and after adding

ADW to DWML. Fig. 15 shows the training procedures of the deep multiple

metric losses, the FER loss, and pose-estimation loss in the first 1000 mini-505

batches on the Multi-PIE and BU-3DFE datasets. Downtrends of the three

losses are more similar and smoother when using ADW, which is in line with

our expectations.

Figure 15: Training procedures of three losses in DWML on two datasets: (a) trained with

ADW and (b) trained without ADW on the Multi-PIE dataset; (c) trained with ADW and

(d) trained without ADW on the BU-3DFE dataset.

4.6.4. Cross-database experiment on BU-3DFE 7→SFEW

In addition, to verify the generalizability of DML-Net, cross-database val-510

idation was conducted on the challenging in-the-wild SFEW dataset. First,

images from the BU-3DFE dataset were used for training, whereas images from

the SFEW validation set were used for testing without fine-tuning. Table 9
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presents the comparison results of the proposed model and state-of-the-art meth-

ods, including MvDA, GMLDA, GMLPP, DS-GPLVM and GAN reported in515

[13]. Although the training and testing datasets have different settings (e.g.,

pose, lighting, ethnicity, glasses, age, etc.), the results of DML-Net demon-

strate that it is reusable for expression recognition on the SFEW dataset. Our

method achieved an average accuracy of 27.13% while significantly improving

the recognition rate of HA (53.42%) and NE (37.21%).520

Table 9: Cross-validation comparison with state-of-the-art methods. BU-3DFE → SFEW The

best results are in bold.
Methods/Exp. AN DI FE HA NE SA SU

MvDA [13] 23.21 17.65 27.27 40.35 27.00 10.10 13.19

GLMDA [13] 23.21 17.65 29.29 21.93 25.00 11.11 10.99

GLMPP [13] 19.07 21.18 27.27 39.47 20.00 19.19 16.48

DS-GPLVM [13] 25.89 28.24 17.17 42.98 14.00 33.33 10.99

GAN [13] 29.09 24.88 17.65 51.19 20.00 29.20 18.70

IPER [16] 27.30 28.90 24.30 38.70 19.70 26.20 31.40
DML-Net 23.38 21.74 17.02 53.42 37.21 17.81 19.30

5. Conclusion

This study proposes an effective end-to-end trainable network, DML-Net,

for pose-aware and identity-invariant FER. DML-Net consists of two stages. A

five-tuple set is constructed in the first stage. In the second stage, DML-Net first

employs multi-channel sub-CNNs to extract region-based fused features, then525

maps the fused features to the embedding space for multiple triplet metric learn-

ing. Finally, DML-Net jointly recognizes facial expressions and estimates poses

based on multi-channel metric learning by minimizing the deep multiple metric

losses, the FER loss, and pose-estimation loss with dynamically learned loss

weights. Our method outperforms existing state-of-the-art methods in terms of530

performance and robustness, with the highest accuracies of 93.5% in multi-view

FER and 99.9% in pose estimation. In future work, we will introduce context

attention mechanisms and apply the model in an unconstrained environment
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(i.e., in-the-wild).
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