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Group-level emotion recognition (GER) is challenging since it significantly relies on differ-
ent individual facial expressions, complex group relationships, and contextual scene infor-
mation. Due to complicated emotion interactions and emotion bias among multiple
emotion cues, current techniques still fall short when it comes to detecting complex group
emotion. In this study, we propose a context-consistent cross-graph neural network
(ConGNN) for accurate GER in the wild. It can model multi-cue emotional relations and
alleviate emotion bias among different cues, thus obtaining the robust and consistent
group emotion representation. In ConGNN, we first extract the facial, local object, and glo-
bal scene features to form multi-cue emotion features. Then, we develop a cross-graph
neural network (C-GNN) for modeling inter- and intra-branch emotion relations, obtaining
a comprehensive cross-branch emotion representation. To alleviate the effect of emotion
bias during C-GNN training, we propose an emotion context-consistent learning mecha-
nism with an emotion bias penalty to help obtain context-consistent group emotion, and
then achieve robust GER. Furthermore, we create a new, more realistic benchmark,
SiteGroEmo, and use it to evaluate ConGNN. Extensive experiments on two challenging
GER datasets (GroupEmoW and SiteGroEmo) demonstrate that our ConGNN outperforms
state-of-the-art techniques, with relative accuracy gains of 3.35% and 4.32%, respectively.

� 2022 Elsevier Inc. All rights reserved.
1. Introduction

Group emotion recognition (GER), a sub-challenge of Emotion Recognition in the Wild Challenge1 (EmotiW), is a recent
research direction of great interest in the field of affective computing and computer vision. Effective and robust GER has an
important role in understanding human emotions and analyzing human intentions [1–3], and can be used in a variety of appli-
cations, such as human-computer interaction, behavior and event prediction, and smart city construction [4–6]. Rather than
identifying the expressions of individual faces, GER mainly focuses on the emotional state of a group of people in complex sce-
nes, aiming to classify the overall emotion of a group of people into three categories: positive, neutral or negative [2,7]. This
requires a thorough comprehension not only of the individual’s facial expression, but also of the image content and contextual
information of the scene. Fig. 1 shows the differences and challenges between traditional facial expression recognition (FER) and
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Fig. 1. Comparison of GER and FER in the wild. (a) GER of a crowd in a parade demonstration scene, and (b) FER of independent faces in the scene.
Obviously, it is difficult to obtain the real group emotion in a scene by only relying on recognizing facial expressions (Fig. 1(b)), due to ignoring the
situational contextual information in the scene, such as scene content, person poses, signs, etc.
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GER in the wild. Compared to the traditional FER task, GER in the wild faces additional challenges, such as, undefined multiple
emotion cues, complex facial expressions, crowd relations, and emotion bias among different emotion cues [8–12].

Existing methods for GER can be divided into two major categories: facial expression-based and multi-cue-based meth-
ods. Most facial expression-based methods focus on recognizing facial expressions of individuals in an image, determining
the final group emotion by averaging these expressions [13]. For example, facial expression-based methods [13–15] first
used the facial expression descriptor to identify the expression of each face in an image, and then employed the Group
Expression Model (GEM) to disregard the influence of the environment and thus obtain the final group emotion. Given
the considerable challenges in recognizing the overall emotion from facial expressions in a crowd, most existing facial
expression-based methods only focused on the happiness expression with its corresponding intensity [11,13,14]. However,
these expression-based methods are hardly adequate for the applications of GER in the wild.

The recent successful multi-cue-based methods intend to capture multiple cues, such as facial expressions and scene
semantic information, in a crowd for GER [4,16,17]. Liu et al. [16] extracted face and overall scene context features with a
deep neural network (DNN) for GER and achieved an accuracy of 71.83 % on the GAF dataset [18]. Guo et al. [4] extracted
more emotional cues, including faces, objects, bodies, and the whole scene with a graph neural network (GNN), improving
accuracy on the same dataset by 7.25 % [7]. Despite the progress achieved, these existing methods primarily focus on mod-
eling visual information without involving effective visual relation reasoning mechanisms and emotion differences in mul-
tiple cues.

In general, GNNs [19] have been demonstrated to be particularly effective for modeling relations and importance between
different cues. However, despite their potential advantages, there are two significant obstacles that make directly applying
GNNs to the GER task difficult. First, different cues may have opposite emotion representations (see Fig. 2). For example, in
the same image the faces show positive expressions while the scene depicts a neutral emotion. In such case, the traditional
GNN relation approach cannot solve the problem of emotion bias. Second, simultaneously learning inter- and intra-branch
relations is both crucial and challenging. As shown in Fig. 2(b), existing GNN methods can efficiently simulate intra-branch
relations (e.g., the relation between two people), but they struggle to describe the relations among different cue branches
(e.g., the people and the scene).

To address the aforementioned limitations and obtain context-consistent group emotions, we propose a novel context-
consistent cross-graph neural network (ConGNN) for attaining robust GER in the wild. ConGNN consists of three main com-
ponents, i.e., the multi-branch emotion feature extractors (MFE), a cross-graph neural network (C-GNN), and emotion
context-consistent learning (ECL). In particular, in MFE, we first use three parallel feature extractors, i.e., facial, local object,
and global scene feature extractors, to extract facial, object, and scene emotional features from different branches, respec-
tively. Then, we employ C-GNN to model inter- and intra-branch emotion relations for a comprehensive emotion represen-
tation. To alleviate emotion bias among different branches, we introduce the ECL mechanism with an emotion bias penalty
function (BPF) to make the network obtain the consistent group emotion in different emotion branches. In addition, we cre-
ate a new, more realistic benchmark, and then use it to evaluate the proposed ConGNN for the GER task.

The major contributions of this study are summarized as follows.
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Fig. 2. Comparison of existing approaches and the proposed ConGNN for GER in the wild. (a) Facial expression-based CNN method, (b) multi-cue-based
GNN method, and (c) proposed ConGNN. Inconsistent emotions in faces and scenes are a challenge for the present methodologies in (a) and (b), leading to
the emotion bias and suboptimal results. The pro- posed ConGNN (see (c)) aligns the emotion bias for improving the modeling of intra- and inter-branch
emotion relations, thus achieving more robust GER.
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(1) We propose ConGNN to achieve accurate GER in the wild. Extensive experiments on two challenging group emotion
datasets demonstrate that our approach outperforms several other widely-used techniques.

(2) To extract multiple emotion cues for comprehensive emotion representation, we introduce MFE and C-GNN for mod-
eling the multi-cue emotion representation from the face, local object, and global scene branches. Both techniques
effectively address the issues of describing inter- and intra-branch relations as well as obtaining more robust emotion
representation.

(3) A novel ECL mechanism is proposed to solve emotion bias (that exists) in different branches during training. It can help
the network obtain robust context-consistent group emotion learning by aligning the differences in emotion cues of
various branches.

(4) We create a new, more realistic benchmark and then use it to evaluate the proposed method for the GER task. Com-
pared with the widely used GER benchmark GroupEmoW, our benchmark has 10,034 crowd images with different
countries, races, emotions, and events worldwide. It is referred to as the site group emotion (SiteGroEmo) dataset,
divided into training, validation, and testing sets with 6,096, 1,972, and 1,966 images, respectively.

The remainder of this paper is organized as follows. Section 2 introduces related work. Section 3 presents our ConGNN
approach for GER. Section 4 discusses our experimental results on publicly available and our self-built datasets. Section 5
concludes the study.
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2. Related work

In this section, we first discuss the methods related to the proposed ConGNN, i.e., facial expression-based, multi-cue-
based, and relation learning-based methods for GER in the wild. Then, we present the datasets commonly-used in this field.

2.1. Facial expression-based methods

Facial expression-based methods recognize group-level emotion solely through the facial expressions of individuals in an
image without considering the background. Given the considerable challenges in multi-person expression recognition in a
crowd, early GER methods only analyzed positive emotion, i.e., the happiness expression and its intensity. Herńandez
et al. [20] calculated and averaged each individual’s smile intensity in the crowd to obtain group-level happiness. Taking into
account the impact of human behavior, Dhall et al. [21] estimated happiness intensity on the basis of the structure of group
and local attributes, such as occlusion, and achieved a mean absolute error (MAE) of 0.379 on the HAPPEI dataset. Vonikakis
et al. [15] used geometric facial features, the distribution of 100 individual expressions, and the significance of each face in a
crowd to perform group-level emotion prediction. However, the aforementioned studies only considered face related infor-
mation for GER, disregarding the rich scene information, which is insufficient for the effective analysis and recognition of
group emotions.

2.2. Multi-cue-based methods

Recently, many studies have begun combining facial expression information with scene contextual information for GER
due to the development of deep learning and group emotion datasets. In [22], group emotions were estimated by using facial
expression and the whole image semantic features. Ghosh et al. [23] leveraged on the facial expression information, scene
information, and high-level facial visual attributes for GER. More recently, Guo et al. [24] used the face and the whole scene
features with deep CNN to perform group-level emotion prediction. Huang et al. [25] proposed an information aggregation
method for generating feature descriptions of face, upper body, and scene for GER in the wild. Guo et al. [4] proposed a GNN-
based model for extracting and fusing multiple emotion information, including scene, face, and object features. However,
despite the positive outcomes of the multi-cue strategy, research into multi-cue extraction and fusion in the wild as well
as emotion bias among multi-cues is still ongoing.

2.3. Relation learning

The relation learning framework, which has seen extensive use in computer vision and image recognition, such as picture
re-ranking [26] and emotion classification [27,28], can effectively represent the relationships between objects and models
[29,30]. At present, commonly-used relation learning models can be divided into two categories, namely attention-based
and graph-based methods [31]. Wang et al. [32] proposed a cascade attention network to use the importance of each face
in an image to generate a global representation for GER. Because a graph can model the relationships between nodes,
GNN-based relation learning has attracted increasing interest [33,34]. Recently, more and more GNN-based methods are
applied to improve the performance of GER. Guo et al. [4] used a GNN for understanding image emotion based on multiple
cues. This GNN achieved good GER performance thanks to modeling the relationships between the emotions of the face,
object, and scene. Although the aforementioned methods can help model and learn relations among multiple features, they
mostly focus on intra-branch feature relations. How to adequately learn inter- and intra-branch relations remains an open
research problem.

2.4. Group emotion datasets

To develop GER techniques, many of group emotion datasets in the wild have been proposed and constructed recently,
e.g., such as HAPPEI [13], GAF [18], GAF 2.0 [7], GAF 3.0 [2], and GroupEmoW [4]. These datasets are collected from the web-
sites of Google, Baidu, Bing, and Flickr, crawled by some emotional keywords. Due to difficulty in labeling and acquisition,
most of these datasets do not consider geographical location and scene differences. This might greatly limit the real-world
application of the GER technologies. Therefore, the creation of a new GER dataset with geographical differences and infor-
mation in the wild, and the development of a more robust and advantaged benchmark are highly necessary for GER tasks.
3. Methodology

In this section, we present a novel ConGNN to obtain discriminative context-consistent emotion representation, which
enables robust GER in the wild [35]. Fig. 3 depicts the overall architecture of our proposed ConGNN. ConGNN consists of
three main components, i.e., MFE, C-GNN, and ECL. First, we use MFE to extract multi-cue emotion features from different
information branches. Then, we use C-GNN for group relation learning by modeling intra- and inter- branch affective rela-
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Fig. 3. Overview of ConGNN for GER in the wild. In ConGNN, we first use multi-branch feature extractors (MEF) for multi-cue emotion representation, and
then use a cross-graph neural network (C-GNN) with ECL to model group relations and align emotion bias for robust group emotion prediction. Note: the
dotted line only represents the prediction process.
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tions. Meanwhile, a novel ECL mechanism is used to align emotion bias among different branches to help context-consistent
emotion representation learning. In the succeeding sections, we subsequently explain MFE, C-GNN, and ECL.

3.1. MFE for Multi-cue emotion extraction

To obtain multi-clue emotion information from crowd scenes, we introduce three parallel feature extraction branches for
respectively extracting multi-face, local object (including body and items in the scene), as well as global scene features. Three
pre-trained DNNs, i.e., Resnet50 [36], LSTM [37] and SE-Resnet50 [38], are employed as facial feature, object feature, and
scene feature extractors.

3.1.1. Facial feature extraction
In the facial feature extraction branch, the facial regions are first detected and cropped using the standard face detectors

RetinaFace [39], in order to build the face stream input. Then, we run these face regions through a pre-trained Resnet50 [36]
and fine-tune them on the corresponding GroupEmoW and SiteGroEmo datasets to extract facial expression features with a
size of 112 � 112. And a two-layer LSTM network is further used to learn dependence among faces. Formally, assuming that
an image is p and the number of detected facial regions is N1, we can obtain the extracted facial expression features
X1 2 RL1�N1 , which can be given by:
X1 ¼ x11; x12; � � � ; x1N1

� �
; ð1Þ
where L1 is the dimension of each facial expression feature.

3.1.2. Object feature extraction
For local object extraction, each image is first extracted using a bottom-up attention model, i.e., the Resnet50-FPN detec-

tor [40], to acquire the salient object patches (e.g., human bodies, flowers and cups) that are most related to group emotions.
Then, local object features are extracted using SE-ResNet50, which is pretrained on the ImageNet-1 K database and fine-
tuned on the corresponding GroupEmoW and SiteGroEmo datasets. Formally, given an image p as input, the number of
detected objects is N2 and the object emotion features X2 2 RL2�N2 can be written as:
X2 ¼ x21; x22; � � � x2N2

� �
; ð2Þ
where L2 is the dimension of each object feature.

3.1.3. Scene feature extraction
In the global scene extraction branch, we employ the pretrained SE-ResNet50 [38] to extract the whole scene semantic

features. The pretrained model is also fine-tuned on the corresponding GroupEmoW and SiteGroEmo datasets. We can obtain
the extracted global scene feature X3 2 RL3�1, where L3 is the dimension of the scene semantic feature.

After multi-cue feature extraction, the multi-cue emotion representation X ¼ fX1;X2;X3g can be fed to the following C-
GNN for intra- and inter-branch emotion relation modelling.
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3.2. C-GNN for emotion relation learning

With the multi-cue emotion representation X, we propose C-GNN for emotion relation learning, to achieve robust com-
prehensive emotion representation. C-GNN is composed of two phases, i.e., cross-branch graph construction and group rela-
tion learning.

3.2.1. Cross-branch graph construction
Using the multi-cue emotion features X, we initially build three complete cross-branch graphs for emotion relation learn-

ing, namely the face graph, object-context graph, and whole scene-context graph. The face graph is used to learn the rela-
tions among faces; the object-context graph is designed to establish the relations between local objects and the global scene;
and the whole scene-context graph is constructed for learning the relations and interactions among all cues in the scenario,
including faces, objects and the scene.

The cross-branch graph construction consists of three steps, i.e., node tensor definition, message aggregation initializa-
tion, and graph construction. Fig. 4 offers a straightforward schematic view of the graph construction process.

Node tensor definition. Given each feature vector xij 2 X as the input, we first use a rectified linear unit (ReLU) function

to normalize and project the input into an initialized node vector h0
ij, and then concatenate all the node vectors of the i–th

branch to form a node tensor H0
i . They can be written as,
Fig. 4.
represe
represe
constru
h0
ij ¼ ReLU Wixij þ bi

� �
; ð3Þ

H0
i ¼ h0

i1; h
0
i2; � � � ;h0

iNi

h i
2 RLh�Ni ; i ¼ 1;2;3; ð4Þ
where h0
ij 2 RLh is the j–th normalized node feature vector with the dimension of Lh. Ni is the node amount in the i–th branch.

Wi 2 RLh�Ni and bi 2 RLh are the weight parameter and the bias vector of the network, respectively. Notably, Wi and bi are
shared across nodes within the same cue type.

Message aggregation initialization. As shown in Fig. 4, given the initialized node vector, we first represent the initialized
message passing pairs between any node a and node b as r a; bð Þ ¼ fr0a b; r

0
b ag, where a; b 2 fjg and a–b, which can be cal-

culate as:
r0a b ¼Wbh
0
ib; r

0
b a ¼Wah

0
ia; ð5Þ
where Wa;Wb 2 RLh�Lh are the weight parameter matrices associated to the corresponding nodes. h0
ia and h0

ib are the feature
vectors of nodes a and b, respectively. Then, we aggregate all message passing to a node from its neighbor nodes as m0

ij, to

form the initialized message aggregation tensor M0
i ¼ m0

ij

n o
, as,
Schematic of cross-branch graph construction. (a) The constructed graph G ¼ fH0
i ;M

0
i gwith four nodes and six associated message passing pairs.r0a b

nts the initialized correlation message from node b to node a. (b) Message aggregation between each node and its neighbor nodes in the graph. We
nt the aggregated message of the node a as m0

ia ¼ r0a b ; r
0
a c ; r

0
a d

� �
. Note: the message aggregation mechanism is the same in all three graph

ction.
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m0
ij ¼

X
ðlÞ

r0j l; ð6Þ
where l represents all neighbor nodes of the node j in the graph. Fig. 4(b) shows the process of node a gathering the message
vectors from all its adjacent nodes in the graph. In this manner, we obtain the final message aggregation tensor
M0

i ¼ fm0
ia;m

0
ib;m

0
ic;m

0
idg of this graph.

Cross-branch graph construction. Based on the obtained node tensor H0
i and message aggregation tensor M0

i , we con-
struct the face, object-context, and scene-context graphs in an inter-cross manner, respectively, as the following steps: 1) for
face graph construction, we use the face node tensor H0

1 and message aggregation tensor M0
1 to construct the to construct the

face graph GðH0
f ;M

0

f
Þ with N1 nodes, where H0

f ¼ H0
1; M

0
f ¼ M0

1; 2) for object-context graph construction, considering that the

integration of global scene and local object features can help to suppress emotion bias among different emotional cues,
we combine the node tensor of local objects H0

2 with the node tensor of the global scene H0
3 to construct a rich object-

context node tensor H0
c ¼ fH0

2;H
0
3g. Following Eqs. (5) and (6), we can obtain the object-context message aggregation tensor

M0
c . Using H0

c and M0
c , we can construct the initialized object-context graph GðH0

c ;M
0

c Þ, with N2 + N3 nodes; 3) for whole scene-
context graph construction, we first fuse the features of all branches to form a multi-branch fused node tensor
H0

w ¼ fH0
1; H

0
2;H

0
3g, and then calculate the corresponding message aggregation tensor M0

w via Eqs. (5) and (6), and subse-

quently, construct the whole graph GðH0
w;M

0

wÞ with N1 + N2 + N3 nodes in the same way as above.

3.2.2. Group relation learning
Visual relationships have been proven to be crucial for many computer vision tasks [41]. To obtain the group emotion

relations in varied and complex scenes, we must achieve a more comprehensive emotion representation in a large scene
by interpreting and modeling relations among different emotional cues in an image. Motivated by this objective, we capture
and model the intra- and inter-relations of different emotion cues in a group through C-GNN. The detailed relation learning
procedure with C-GNN is provided in Algorithm 1. In C-GNN, we first employ gated recurrent units (GRUs) to iteratively
Training pipeline of C-GNN with ECL. With the constructed cross-branch graphs (i.e., the face graph GðH0
f ;M

0

f
Þ, object-context graph GðH0

c ;M
0

c Þ, and
cene-context graph GðH0

w;M
0

wÞ), C-GNN first uses K-layer GRUs to model the relations of graph nodes and update each node feature in each graph of
ss-branch emotion graphs. After K iterations in GRUs, we obtain the updated graph node features HK

f , H
K
c , H

K
w . Then, three parallel MLPs (i.e., MLPf ,

nd MLPw) are used to learn the comprehensive emotion representation O ¼ fOf ;Oc ;Owg from the updated node features of the graphs. Furthermore,
oduce ECL with BPF to further interact these graphs across branches, assisting C-GNN in alleviating emotion bias and achieving emotion-consistent
g. Note: h0

ij and hK
ij are the initialized and updated nodes after K iterations in the graphs, respectively.
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update the states of nodes and messages of the constructed graphs, and then use three multi-layer perceptions to fuse the
states of graphs across branches to obtain the comprehensive emotion features O ¼ fOf ;Oc; Owg. The detailed training pipe-
line of C-GNN is depicted in Fig. 5.

More specifically, the graph updating and learning includes the following steps. Given the constructed cross-branch

graphs GðH0
f ;M

0

f
Þ, GðH0

c ;M
0

c Þ, and GðH0
w;M

0

wÞ as input, C-GNN uses the K-layer GRUs to make each node of the graph change

its state all the time until the learning convergence. Through this process, message information exchanges among nodes and
the relations between nodes can be modeled and learned. Fig. 6 shows the detailed architecture of GRU for graph updating in

C-GNN. In the k-th iteration of GRUs, taking nodes {h k�1
ij } and messages {mk�1

ij } of previous graphs as input, the current nodes

{h k
ij} and messages {h k

ij} are calculated and updated according to the procedure in Algorithm 1. Empirically, we set the num-
ber of iterative layers of GRUs to K = 4.

Algorithm 1. Detailed group relation learning procedure with C-GNN

Input:

fxijg3i¼1: multi-cue emotion features
Wi;Wz;Wr ;Wt ;Wh;Wf ;Wc;Ww : weight matrices
bi; bf ; bc; bw : bias vectors
rð�Þ: the logistic sigmoid

Output: comprehensive emotion features,O ¼ fOf ;Oc;Owg
Initialize: the iteration of GRUs k  0, the number of iterations: K
1. node feature and message aggregation vector initialization:

h0ij ¼ ReLUðWixij þ biÞ
m0

ij ¼
P

a;bð ÞWth
0
ab;nodes a; bð Þ– i; jð Þ

2. cross-branch graph construction:G H0
f ;M

0
f

� 	
;G H0

c ;M
0
c

� 	
;GðH0

w;M
0
wÞ

3. graph iteration with K-layer GRUs
Repeat:
k kþ 1

zkij ¼ rðWz � mk�1
ij ;hk�1ij

h i
Þ

rkij ¼ rðWr � mk�1
ij ; hk�1ij

h i
Þ

hkij ¼ 1� zkij
� 	

� hk�1ij þ zkij � tanhðWh � mk�1
ij ; rkij � h

k�1
ij

h i
Þ

mk
ij ¼

P
a;bð ÞWth

k
ab;nodes a; bð Þ– i; jð Þ

Until: k = K

4. the last graph update:G HK
f ;M

K
f

� 	
;G HK

c ;M
K
c

� 	
;GðHK

w;M
K
wÞ

5. comprehensive emotion feature extraction:
Of ¼WfH

K
f þ bf ;Oc ¼WcH

K
c þ bc;Ow ¼WwH

K
w þ bw

To further model inter-branch emotion relations, at each iteration k, we first integrate the node features of the face graph and

object-context graph to the whole scene-context graph via a concatenation operation, i.e., H k
w ¼ ConcatðH k

f ; H
k
c Þ. After train-

ing the GRUs with K iterations, all the nodes and their corresponding messages are updated for modelling emotional rela-
tions within branches. Then, three multi-layer perceptions denoted as MLPf , MLPc , and MLPw (see Fig. 5), are employed as
cross-branch emotion encoders. We represent the extracted face-branch, context-branch, and fused cross-branch emotion
representations as Of , Oc , Ow, respectively. Consequently, we have,
Of ¼ MLPf ðHK
f Þ;Oc ¼ MLPcðHK

c Þ;Ow ¼ MLPwðHK
wÞ; ð7Þ
Each of the three multi-layer perceptions MLPf , MLPc , and MLPw has one fully connected layer with the LeakyRelu acti-
vation function. In this end, we obtain the comprehensive emotion features O ¼ fOf ;Oc;Owg. The more details can be shown
in Algorithm 1.

3.3. ECL for emotion bias alignment

With the multi-cue features X and C-GNN, we can estimate the emotions of groups in the wild. However, we observe that
C-GNN can focus on modeling the relations of branches and obtaining comprehensive emotion representation, while disre-
garding emotion bias among different branches, e.g., facial expressions and scene context emotions in the same image may
714



Fig. 6. The detailed architecture of the GRU. zkij and rkij are the reset and update gates in GRU, which control how much of the previous memory content is to
be forgotten and how much of the candidate memory content is to be added.
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have opposite emotion polarity. Such disregard can easily lead to incorrect emotion classification in GER. In this regard, a
novel ECL mechanism and its corresponding emotion BPF are proposed to further interact these branches and help the net-
work achieve consistent learning, and thus, alleviate the effect of emotion bias for robust GER.

As seen in Fig. 5(b), ECL with an emotion BPF includes three graph losses. The first loss is the face graph loss Lf , the second
one is the object-context graph loss Lc , and the third one is the whole scene-context graph loss Lw. The cross-entropy loss is
used for optimization. Mathematically, the face graph loss can be expressed as:
Lf ¼ � 1
Nf

XNf

i¼1

XC
c¼1

1 c ¼ yi½ �logPf i ;c; ð8Þ
where C is the number of emotion classes (C = 3 in this study), and Nf is the number of faces. 1 c ¼ yi½ � is a binary indicator,
and Pf i ;c is the predicted probability that the face graph representation belongs to the group emotion c. The context graph loss
Lc is given by,
Lc ¼ � 1
Nc

XNc

i¼1

XC
c¼1

1 c ¼ yi½ �logPci ;c; ð9Þ
where Nc is the number of nodes in the object-context graph, Pci ;c denotes the predicted probability that the context graph
representation belongs to the emotion class c. The whole fused cross-branch graph loss Lw is given by:
Lw ¼ � 1
Nw

XNw

i¼1

XC
c¼1

1 c ¼ yi½ �logPwi ;c; ð10Þ
where Nw is the number of vectors in the whole scene-context graph, Pwi ;c is the predicted probability that the fused graph
representation belongs to the emotion class c. To optimize the three aforementioned losses in a consistent direction during
learning, ECL introduces an emotion BPF that constrains and forces opposite direction graph loss learning for context-
consistent learning. BPF is provided by,
BPF ¼ 1þ k � f yfi ; y
c
i

� 	� 	
� Lf þ Lc þ Lw
� �

; ð11Þ

f yfi ; y
c
i

� 	
¼ 0; if yfi ¼ yci

1; if yfi–yci

(
; ð12Þ
where k is a penalty coefficient that controls the penalty degree during learning. f (.,.) is the penalty indicator function that

indicates whether a penalty should be added. yfi and yci are the predicted emotion categories of the face graph and object-
context graph (i.e., positive, negative or neutral), respectively. BPF is an adaptive consistent learning objective that effectively
constrains and guides face, object-context, and whole scene-context graph losses. In summary, training C-GNN to recognize
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group emotions with ECL can help ensure that the information from each graph branch is properly attended to and ade-
quately learned, resulting in consistent and robust GER.

3.4. Prediction

For inference, we only use the whole fused cross-branch emotion feature Ow to predict the group emotion. Given that
cross-fusion incorporates all emotion cues, it can be used as a comprehensive emotion representation of a group for predic-
tion. We use Softmax operation to predict the emotional class probability as follows:
pc ¼
eWc �OwþbcPC
c¼1eWc �Owþbc

; ð13Þ
where pc is the predicted probability for the emotion class c, and C is the number of emotion categories.Wc is the c-th row of
the weight matrix W of the network, and bc is the c-th element of the bias vector b.

4. Database collection and annotation

To evaluate the proposed ConGNN method comprehensively, extensive experiments on two challenging group emotion
datasets, i.e., GroupEmoW [4] and SiteGroEmo, are conducted. The SiteGroEmo is a new, more realistic bench- mark collected
and labeled by the authors of this paper.

4.1. SiteGroEmo: A new GER dataset

The new-established SiteGroEmo is a group-level emotion dataset with 10,034 images in the wild, collected from differ-
ent tourist attractions worldwide. This dataset contains a wealth of geographic information and variation, and can be used in
several downstream tasks and real-world applications, such as GER, place emotion extraction, and travel recommendation.
Each image in the dataset was labeled with one of the negative, neutral and positive emotion categories. The number of neg-
ative, neutral and positive emotion categories are 1,019, 4,355 and 4,660, respectively.

Database collection. To establish the group-level emotion dataset in the wild, we collect a large amount of user-
generated images from the social networking sites, i.e., Flickr and Weibo platforms. These images, which depict a variety
of human emotions, are taken from tourist destinations in China, Japan, Korea, Thailand, the USA, and so on. We also develop
a crawler program for collecting these high-definition images from the Internet to serve as a sample source of facial expres-
sions in the wild. After crawling the data, we eliminate images with less than two people manually, retaining group emotion
images in hundreds of attractions worldwide. Finally, we collected around 15,000 images from hundreds of travel sites,
including images from various locations, social environments, and events.

Database annotation. In the SiteGroEmo dataset, each photo is labeled with negative, neutral, or positive valence state by
five annotators. We develop a piece of software called Expression Label Tool (ExpreLabelTool) to assist annotators in labeling
efficiently. To ensure the professionalism of the annotation, five annotators trained in emotional knowledge are selected to
to annotate the collected images with the tool. If more than three of the annotators give the same emotion annotation to an
image, this image with the emotion annotation will be retained. Otherwise, the image will be eliminated. In the end, the
dataset contains 10,034 images. For evaluation, the SiteGroEmo dataset is divided into training, validation, and testing sets
with 6,096, 1,972, and 1,966 images, respectively. Fig. 7(a) shows some examples from different travel sites in the Site-
GroEmo dataset.

4.2. GroupEmoW database

GroupEmoW [4] is a public GER dataset that consists of 15,894 images. It is divided into train, validation, and test sets,
each with 11,127, 3,178, and 1,589 images. These images are collected from the Google, Baidu, Bing, and Flickr websites by
searching for keywords related to social events, such as funeral, birthday, protest, conference, meeting, and wedding. The
collective emotions of the images are also labeled with negative, neutral, or positive valence state. Fig. 7(b) shows some
examples from the GroupEmoW dataset.

5. Experiments and analysis

In this section, we provide the implementation details of the proposed Con– GNN and a comparison with state-of-the-art
methods.

5.1. Experimental setting and implementation details

Our ConGNN was implemented with the Pytorch and TensorFlow libraries. A warm-up mechanism was used to reduce
overfitting during training. Meanwhile, a dropout scheme was used with a ratio of 0.5 in 1 � 1 convolution layers. Addition-
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Fig. 7. Examples from (a) the SiteGroEmo dataset, (b) the GroupEmoW dataset.
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ally, we employed data augmentation techniques like flips, contrast, noise, and so on. The important training parameters, e.g.,
initial learning rate, mini-batch size and learning trick of each module are provided in Table 1.
5.2. Overall performance

5.2.1. Results on the SiteGroEmo dataset
Fig. 8(a) shows the confusion matrix of ConGNN on the SiteGroEmo dataset. Among three emotion categories, the highest

accuracy is 88.37 % of positive, while the lowest accuracy is 72.09 % for negative. The average accuracy of GER is 83.57 %.
To evaluate the proposed ConGNN for GER thoroughly, we compared our method with several state-of-the-art tech-

niques, including Resnet34, SE-ResNet50 [38], Efficientnet-b2 [42], CAER-Net [43] and a GNN-based model [4]. As indicated
in Table 2, our proposed method increases GER accuracy by 2.98 % and achieves the highest group emotion estimation accu-
racy when compared to the second-best method, i.e., the GNN-based approach, which displays the best performance among
other comparison methods.

In addition, to verify the robustness of our method, we conducted the 5-fold cross validation on the SiteGroEmo dataset,
as shown in Table 3. Obviously, compared to the state-of-the-art methods in Table 2, our method still obtained the best per-
formance of 82.31 %, indicating a better robustness of our method.
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Table 1
Important training parameters of implementation.

Stage Multi-branch feature extraction Group relation learning

Network Resnet50 LSTM Se-Resnet50 C-GNN

learning rate 1e-4 5e-6 1e-4 2e-4
mini-batch size 32 1 32 1
learning trick fixed learning rate warm up

Fig. 8. Confusion matrices of ConGNN on (a) the SiteGroEmo, (b) the GroupEmoW datasets.

Table 2
Quantitative evaluation of ConGNN compared with other methods on the SiteGroEmo dataset. The best results are in bold.

Methods Features Accuracy (%)

Negative Neutral Positive Average

Resnet34 Scene, Face 67.59 75.74 64.35 69.64
SE-ResNet50 [38] Scene 63.82 70.53 73.99 71.58
Efficientnet-b2 [42] Scene, Face 70.65 68.54 72.69 70.68
CAER-Net [43] Scene, Face 80.59 80.02 80.46 80.28
GNN [4] Multi-cues 73.86 82.13 80.41 80.59
Our ConGNN Multi-cues 72.09 80.69 88.37 83.57
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5.2.2. Results on the GroupEmoW dataset
Fig. 8(b) displays the confusion matrix of ConGNN on the GroupEmoW dataset. Among the three emotion categories, the

highest accuracy is 94.13 % for positive, while the lowest accuracy is 77.33 % for Neutral. The possible reason for this result is
that the neutral is difficult to distinguish from negative. The average accuracy of GER is 85.59 %.

The comparison results presented in Table 4 show that our method is still superior to other algorithms. We evaluated our
method by comparing its performance with the reproduced results of Resnet34, SE-ResNet50 [38], Efficientnet-b2 [42],
CAER-Net [43] and the GNN-based model [4]. As indicated in Table 4, our approach outperforms all of the other methods
and has better accuracies in all three emotion categories.
5.3. Ablation study

5.3.1. Effect of different emotion cues
To evaluate the effectiveness of different emotion cues, we performed an ablation study by gradually adding different

emotion cues. These inputs consisted of the extracted facial, object, and whole scene features with MFE. ConGNNwas trained
and tested on the GroupEmoW and SiteGroEmo datasets, respectively. The effects of different emotion cues are provided in
Table 5. The best result was obtained when all the face, object, and whole scene features were used as input. Obviously, the
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Table 3
5-fold cross validation on the SiteGroEmo dataset.

Method Fold1 Fold2 Fold3 Fold4 Fold5 Average

Our ConGNN 79.70 84.21 85.11 78.94 83.57 82.31

Table 4
Quantitative evaluation of ConGNN compared with other methods on the GroupEmoW dataset. The best results are in bold.

Methods Features Accuracy (%)

Negative Neutral Positive Average

Resnet34 Scene, Face 65.17 75.74 64.35 68.13
SE-ResNet50 [38] Scene 63.82 70.53 73.99 69.79
Efficientnet-b2 [42] Scene, Face 71.84 72.14 73.45 72.33
CAER-Net [43] Scene, Face 77.57 70.68 89.51 80.61
GNN [4] Multi-cues 79.31 80.15 89.42 84.62
Our ConGNN Multi-cues 81.90 77.33 94.13 85.59

Table 5
Ablation study on analysing ConGNN. Impacts of three different emotion cues obtained in MFE (Face, Object, Scene) on the two datasets. The best results are in
bold.

Methods Face Object Scene Accuracy (%)

GroupEmoW SiteGroEmo

ConGNN
p

82.82 80.11p p
82.94 81.64p p
84.83 81.73p p p
85.59 83.57
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proposed multi-cue emotion features achieved the best performance, with an accuracy of 83.57 % on the SiteGroEmo dataset
and 85.59 % on the GroupEmoW dataset, respectively.

5.3.2. Effect of different components
To better understand the role of each module in the proposed ConGNN, an ablation study was performed separately on

the SiteGroEmo and GroupEmoW datasets. Table 6 presents the ablation results of the gradual addition of MFE, C-GNN and
ECL components to the baseline framework. The baseline is Resnet50 that only learns the original facial features. The base-
line network achieved a GER accuracy of 71.26 % and 68.74 % on the GroupEmoW and SiteGroEmo dataset, respectively. The
addition of MFE can obtain an apparent improvement of 11.5 % and 12.64 %, respectively. Further integration of C-GNN
improved the accuracy to 84.62 % and 82.45 %, respectively. By learning consistency among cross-branches, the addition
of ECL results in relative increase of 1.15 % and 1.36 % on the GroupEmoW and SiteGroEmo datasets, respectively. With
the three components, the proposed ConGNN achieved the best accuracies of 85.59 % and 83.57 % on the GroupEmoW
and SiteGroEmo datasets, respectively.

5.3.3. Effect of BPF in ECL
In addition, Table 7 provides the comparison of the proposed BPF and the traditional cross-entropy (CE) loss applied to

three different network models: CAER-Net [43] with facial and scene features; GNN-based method [4] with facial, object
and scene features; and the proposed ConGNN with facial, object and scene features. Compared to the CE loss, the relative
improvements of BPF in the three methods are 1.76 %, 0.54 % and 2.96 % on the GroupEmoW dataset, respectively, and 2.22 %,
2.19 % and 3.40 % on the SiteGroEmo dataset, respectively. The results indicate that the ConGNN framework with BPF can
achieve effective context-consistent learning. We also believe that the proposed BPF can be easily extended to other machine
learning applications.

5.3.4. Effect of key parameters
Effect of face amount. In this section, we discussed the effect of face amount on the MFE of the proposed method. Fig. 9

presents the accuracy of GER versus different number of faces on the SiteGroEmo dataset. For a simple and fair comparison,
we only used Resnet50 [36] for evaluation. Evidently, setting the number of faces to 16 yielded the best performance. In
practice, we randomly replicated the number of faces to 16 when the number of faces in an image was less than 16 and
selected 16 faces with the highest confident scores when the number of faces was over 16. Additionally, we tried to use
dynamic face numbers in accordance with the quantity of each input image’s faces. The orange bar shows that its result
is lower than the result with the number of faces set to 16.
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Table 6
Ablation study of ConGNN. Effects of adding the three components (MFE, C-GNN, and ECL) to the baseline on the two datasets. The best recognition results are
in bold.

Baseline MFE C-GNN ECL Accuracy (%)

GroupEmoW SiteGroEmo
p

71.26 68.74p p
82.76 81.38p p p
84.62 82.45p p p p
85.59 83.57

Table 7
Performance comparison between CE and BPF.

Method Loss Accuracy (%)

GroupEmoW SiteGroEmo

CAER-Net [43] CE 80.61 79.13
BPF 82.03 82.28

GNN-based [4] CE 84.62 81.31
BPF 85.08 82.45

Our ConGNN CE 83.13 80.82
BPF 85.59 83.57
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Effect of the penalty coefficient. As described in section 3.3, the penalty coefficient k controls the penalty extent in BPF.
To further assess the impact of penalty coefficient k in the BPF, we trained ConGNN with different k values. Fig. 10 shows the
performance of ConGNN under different k values on the GroupEmoW (orange) and SiteGroEmo (blue) datasets, respectively.
It is clear that, the best accuracy can be obtained on both two datasets, when k is set to 0.2. And with k = 0.2, we obtained the
best accuracy of 85.59 % and 83.57 % on the GroupEmoW and SiteGroEmo, respectively.
5.3.5. Cross-database experiments on GroupEmoW ? SiteGroEmo
In addition, to verify the generalizability of ConGNN, cross-database validation was conducted on the challenging in-the-

wild SiteGroEmo dataset. Images from the GroupEmoW dataset were used for training, whereas images from the SiteGroEmo
testing set were used for testing without fine-tuning. Table 8 presents the comparison results of the proposed model and
state-of-the-art methods, including ResNet34, SE-ResNet50 [38], Efficientnet-b2 [42] and GNN-based model [4]. Although
the training and testing datasets have different settings (e.g., scene, pose, lighting, ethnicity, age, etc.), the results of ConGNN
demonstrate that it is reusable for group emotion recognition on the SiteGroEmo dataset. Our method achieved an accuracy
of 76.24 %, gaining relative 30.2 % and 0.49 % improvements over the recognition accuracies of CAER-Net and GNN,
respectively.
Fig. 9. Effect of different numbers of faces in an image. For a simple and fair comparison, we only use Resnet50 for evaluation.
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Fig. 10. Accuracy comparison of GER with different penalty coefficient k values in BPF on the GroupEmoW (orange) and SiteGroEmo (blue) datasets,
respectively.

Table 8
Cross-validation comparison with state-of-the-art methods on GroupEmoW ? SiteGroEmo. The best
results are in bold.

Methods Features Accuracy (%)

Resnet34 Scene, Face 61.06
SE-ResNet50 [38] Scene 45.64
Efficientnet-b2 [42] Scene, Face 56.43
CAER-Net [43] Scene, Face 58.54
GNN [4] Multi-cues 75.87
Our ConGNN Multi-cues 76.24

Y. Wang, S. Zhou, Y. Liu et al. Information Sciences 610 (2022) 707–724
5.4. Visualization

5.4.1. Visualization of different emotion representations
To evaluate the effect of different emotion representations, we visualized the cross-branch emotion representation Ow w/

o the ECL and multi-cue emotion representation X in 2D feature space by using the t-SNE [44] on the GroupEmoW dataset.
Compared to the results in Fig. 11(a), the multi-cue emotion representation Ow achieved closer intra-class distances and

longer inter-class distances (see Fig. 11(b)). With the further addition of ECL to Ow, the cross-branch emotion representation
Ow obtained the best clustering, as shown in Fig. 11(c). This result suggests that both C-GNN and ECL technologies can suc-
cessfully alleviate the influence of the emotion bias among multi-feature information, learning a more robust and discrim-
inative emotion representation.

5.4.2. Visualization of emotion bias
Fig. 12 visualize the emotion bias in various models, namely, Resnet50 [36], GNN-based model [4], and our ConGNN, with

different emotion cues. F represents the face cue, S represents the scene cue, and M–C represents the multi-cues proposed in
Fig. 11. 2D t-SNE visualization of different emotion representations. (a) Multi-cue feature X, (b) cross-branch feature Ow without using ECL, and (c) cross-
branch emotion feature Ow with ECL.
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Fig. 12. Emotion bias in different models. The green dashed boxes indicate the correct results.

Table 9
Computational cost of training and testing with different methods on the two datasets. FPS is frames per second.

Methods GroupEmoW (FPS) SiteGroEmo (FPS)

Training Testing Training Testing

Multi-cue-concat 44 93 58 94
GNN [4] 41 92 52 93
Our ConGNN 30 91 39 94
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this study. The results demonstrate that our ConGNN with multiple emotion cues can effectively alleviate the emotion bias
and obtain the best performance, compared with other models.

5.5. Time complexity

Table 9 reports the training and testing time complexities of GER by using different methods, including Multi-cue-concat,
GNN-based model [4], and our ConGNN, on the GroupEmoW and SiteGroEmo datasets, respectively. Multi- cue-concat
means that we just concatenate the facial, object and scene features for GER. Referred to Liu et al. [45], the training complex-
ity referred to the time for one backpropagation during training. All experiments were conducted on a PC with Intel Core i7-
10700 CPU at 2.90 GHz, 16 GB memory, and NVIDA GeForce GTX 2070 SUPER. Our proposed ConGNN resulted in the best
performance with only a small additional computational cost (91 FPS), indicating that the proposed method exhibits
improved accuracy and efficiency. Compared to the GNN, the proposed model achieved the improvement of inference speed
of 1 FPS, indicating that our method does not introduce much computational cost.
6. Conclusion

This study proposed ConGNN, which can mitigate the influence of emotion bias among different emotion information (i.e.,
individual facial expressions, object emotions, and scene emotions) for robust GER in wild scenes. We first used three feature
extractors to extract multi-cue emotion features in three branches, and then proposed the novel C-GNNwith ECL mechanism
to learn inter- and intra-branch group affective relations and obtained a comprehensive cross-branch emotion representa-
tion. ECL can help the network alleviate the influence of emotion bias, and thus, achieve robust GER. Additionally, we built a
new SiteGroEmo dataset for the evaluation of ConGNN. The extensive experiments on the GroupEmoW and SiteGroEmo
datasets demonstrated that ConGNN achieved relative performance improvements of 3.35 % and 4.32 %, respectively. In
the future, we will further consider geographic location and event information into our ConGNN to obtain more accurate
group emotion recognition.
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