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Head pose and facial feature detection are important for face analysis. However, many studies

reported good results in constrained environment, the performance could be decreased due to
the high variations in facial appearance, poses, illumination, occlusion, expression and make-up.

In this paper, we propose a hierarchical regression approach, Dirichlet-tree enhanced random

forests (D-RF) for face analysis in unconstrained environment. D-RF introduces Dirichlet-tree
probabilistic model into regression RF framework in the hierarchical way to achieve the e±-

ciency and robustness. To eliminate noise in°uence of unconstrained environment, facial pat-

ches extracted from face area are classi¯ed as positive or negative facial patches, only positive

facial patches are used for face analysis. The proposed hierarchical D-RF works in two iterative
procedures. First, coarse head pose is estimated to constrain the facial features detection, then

the head pose is updated based on the estimated facial features. Second, the facial feature

localization is re¯ned based on the updated head pose. In order to further improve the e±ciency

and robustness, multiple probabilitic models are learned in leaves of the D-RF, i.e. the patch's
classi¯cation, the head pose probabilities, the locations of facial points and face deformation

models (FDM). Moreover, our algorithm takes a composite weight voting method, where each

patch extracted from the image can directly cast a vote for the head pose or each of the facial
features. Extensive experiments have been done with di®erent publicly available databases. The

experimental results demonstrate that the proposed approach is robust and e±cient for head

pose and facial feature detection.

Keywords : D-RF; unconstrained face analysis; hierarchical regression; head pose estimation;

facial feature detection.
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1. Introduction

Human–computer interface is an active research topic in computer vision area.22,26

Despite recent advances, people still interact with machines through devices like

keyboard and mice, which are not part of natural human–computer communica-

tion.12 As people interact by means of many channels, including body posture and

facial expression, an important step towards more natural interfaces is the visual

analysis of the users movements by the machine.34,36 Head pose estimation and facial

feature detection are important for many applications like natural human–computer

interfaces, face recognition, facial expression analysis and visual focus of attention

recognition.1,2,6,8,10,25,29 Most of the existing methods focus on face analysis (e.g.

head pose estimation18,26,31 and facial feature detection1,6) in constrained environ-

ment, however, face analysis in unconstrained environment remains challenging due

to high variations in facial appearance, poses, illuminations, occlusion, expression

and make-up.

In recent years, regression Random Forest (RF) is a popular method in computer

vision given their capability to handle large training datasets, high generalization

power and speed, and easy implementation.10,13,14,18,40 Some work showed the power

of RF in mapping image features to votes in a generalized Hough space32 or to real-

valued functions.40 Recently, multiclass RF has been proposed in Ref. 18 for

real-time head pose recognition from 2D video data and 3D range images.13,14

Furthermore, Dantone et al. proposed a conditional RF to detect facial feature points

under various head pose only in the horizontal direction.10 The accuracy rate reaches

82.3% in natural head poses instead of head pose motion in wide range. Hence, how

to detect re¯ned head poses and facial feature points in real time and unconstrained

environment remains a problem.

In this work, Dirichlet-tree probabilistic model is introduced into regression RF

framework in the hierarchical way to achieve the e±ciency and robustness for face

analysis. The Dirichlet-tree distribution was proposed by Dennis.24 It is the distri-

bution over leaf probabilities that result from the prior on branch probabilities. He

proved the high accuracy and e±ciency of the distribution. Some researchers use a

Dirichlet-tree distribution in pose estimation,22 multi-objects tracking38 and a®ective

computing.15 The °owchart of the proposed approach is shown in Fig. 1, which

includes two stages for face analysis. First, in order to eliminate the in°uence of noise

Fig. 1. The °owchart of the proposed approach for face analysis.
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in unconstrained environment, facial patches extracted from facial area are classi¯ed

as positive or negative facial patches using RF and only positive facial patches can be

used for face analysis. Then D-RF is proposed to face analysis in the two iterative

procedure. As shown in Fig. 1, the trained D-RF model represents the di®erent sub-

forest trained by D-RF in the di®erent layer and di®erent iteration. In the ¯rst

iteration, coarse head poses are initially estimated to constrain facial feature de-

tection in the D-f1 and D-f2 layers of the D-RF, where D-f1 consists of four sub-layers

for head pose estimation, i.e. D-L1, D-L2, D-L3 and D-L4. D-L1 and D-L2 are two

sub-layers in the horizontal estimation and D-L3 and D-L4 are two sub-layers in the

vertical estimation. D-f2 layer is used for multiple facial feature detection within

three local sub-regions (i.e. the mouth, nose and eyes sub-regions) under the esti-

mated head pose. In the second iteration, head pose are updated based on the

detected facial feature localizations and the re¯ned head pose is used to further

improve the accuracy of the facial features using D-RF. The two iterative procedures

can obtain high accuracy for unconstrained face analysis rather than cast too much

time for running. Hence, two iterations of the D-RF are implemented in this work.

The main contributions of this paper are as follows. We propose a novel approach

for face analysis in unconstrained environment based on a hierarchical regression

framework. The approach is inspired by our previous conference paper23 in

ICIP2014. Di®erent from our previous work, the hierarchical D-RF is introduced for

face analysis in the two iterative procedures. The estimated head pose could provide

geometric constraints to the facial features detection, while the detected facial fea-

tures help to re¯ne the estimated head pose. An achieved multiple-PCA (M-PCA)

feature subspace is extracted from positive facial patches to improve e±ciency and

robustness. Furthermore, multiple probabilitic models are learned in leaves of the

D-RF, i.e. the patch's classi¯cation, the head pose probabilities, the locations of

facial points and face deformation model (FDM) that is de¯ned as the o®sets from

the centroid of facial patches to tip of the nose under di®erent head poses. Moreover,

the composite weighted voting that fuses weighted classi¯cation and regression

voting is used to vote multiple leaves. Experiments have been carried out to evaluate

the performance in terms of coarse and re¯ned head pose estimation, and feature

point detection. The results obtained suggest that the approach could estimate the

head pose and facial feature locations robustly and e±ciently in unconstrained

environment.

The rest of this paper is organized as follows: Section 2 discusses relevant work to

this study. Section 3 details the hierarchical regression approach for head pose es-

timation and multiple facial feature detection. In Sec. 4, experiment evaluation and

analysis are given. Conclusions and proposals on future work are described in Sec. 5.

2. Related Work

In this section, we highlight three subjects that are the closest to our work, which

include RF, head pose estimation and facial feature detection.

Hierarchical Regression Approach for Unconstrained Face Analysis
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RF is a popular method in computer vision given their capability to handle large

training datasets, high generalization power and speed, and easy implementa-

tion.10,13,14,18,30,40 It has emerged as a powerful and versatile method successful in

real-time human pose estimation, object detection, facial point detection and action

recognition.40 Multi-class RF has been proposed for the real-time determination of

head pose from 2D video data.18 In Ref. 36, a conditional RF has been used for real-

time body pose estimation from depth data. A conditional RF also has been proposed

to estimate facial features point under various head pose only in the horizontal

direction in Ref. 10. It has been shown that the body pose can be estimated more

e±ciently using regression than using classi¯cation forests.16 Criminisi et al.9 used

RF regression to vote for the positions of the sides of bounding boxes around organs

in CT images. More information about RF and their application in computer vision

can be found in Ref. 36.

Head pose estimation. Head pose estimation is important in many human

machine interfaces. Head orientation is related to a person's direction of attention, it

can present useful information about what the person is paying attention to. Dif-

ferent methods have been developed for two types of image data, i.e. 2D images or

depth data. Methods on depth data can provide high accuracy, however they require

special hardware (e.g. expensive depth sensor) and need more computations.37 In this

study, we focus on 2D images. Lots of work have been done on head pose estimation

for 2D images, some based on local facial features, while others based on the globe

image.35 Local approaches usually estimate head pose from a set of facial features

such as eyes, eyebrows and lips. Pose can be obtained using a di®erent set of 5 points

(the inner and outer corners of each eye, and the tip of the nose).26

Global approaches use an entire image of face to estimate head pose.33 The

principal advantage of the approaches is that only the face needs to be located.

Osadchy et al.28 instead use a convolutional network to learn the mapping for head

pose estimation and can achieve real-time performance for the problem. Recently,

multiclass RF have been proposed in Ref. 18 for real-time head pose estimation and

3D range images.13,14,32 Dantone et al. proposed conditional RF to estimate head

pose under various conditions only in the horizontal direction. The accuracy rate

reaches 72.3% with ¯ve yaw angle classes.

Facial feature detection. Facial feature detection is often the ¯rst step for

many applications such as face recognition, facial expression analysis and visual focus

of attention recognition.11 Earlier works can be classi¯ed into two categories,

depending on whether they use holistic or local features. Holistic methods, e.g. Active

Appearance Models,1,6 use the texture over the whole face region to ¯t a linear

generative model to a test image. Such algorithms su®er from lighting changes,

modeling complexity, and a bias towards the average face. Moreover, these methods

perform poorly on unseen identities and deal poorly with low resolution images.1,6

Active Shape Models use a linear Point Distribution Model (PDM) constructed from

aligned training shapes, driven to ¯t a new image thanks to simple models of the

Y. Liu et al.
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appearance along pro¯les centered on each landmark.8 But it is sensitive to head pose

rotation on wide range. Dantone et al. proposed conditional RFs to detect multiple

facial feature points in di®erent head poses.10 Their algorithm is the most accurate

approach up-to-date in the literature, capable of precise localizations even in un-

controlled image conditions, like the ones present in the Labeled Face Parts in the

Wild database.3 Yang and Patras proposed a sieving regression forest voting for

facial feature detection in Ref. 39, which achieved the state-of-the-art results on two

public challenging datasets with face images in the wild, without resorting to explicit

shape models.

In general, most of the existing work focuses on facial analysis which includes head

pose estimation and facial feature localization from constrained environment.

However, unconstrained face analysis still remains a challenge due to the high var-

iations in facial appearance, poses, illumination, occlusion, expression and make-up.

3. D-RF for Unconstrained Facial Analysis

In Sec. 3.1, we ¯rst summarize an overview of the proposed approach for uncon-

strained facial analysis. In Sec. 3.2, we show how to model the D-RF from the RF

framework. In Sec. 3.3, a positive/negative facial patch extraction and classi¯cation

method is presented. Then, details on coarse head pose estimation and facial feature

detection using D-RF are given in Secs. 3.4 and 3.5, respectively. Finally, re¯ned

head pose and facial features are obtained using D-RF iteratively in Sec. 3.6.

3.1. Overview of the approach

In the work, we propose a hierarchical D-RF framework for unconstrained face

analysis in the iterative way. The framework of the D-RF is shown in Fig. 2. The

general RF is an ensemble approach in which several tree predictors are combined

together to obtain high performance for classi¯cation or regression (see Fig. 2(a)).

Each tree in the forest is independently generated with random samples selected

from the whole data set. The Dirichlet-tree is the distribution over leaf probabilities

(a) (b) (c) (d)

Fig. 2. The proposed D-RF and multiple models in leaves of the D-RF. (a) RFs, (b) the general Dirichel-

tree distribution, (c) the D-RF framework and (d) the multiple models in leaves of the D-RF.

Hierarchical Regression Approach for Unconstrained Face Analysis
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½p1 . . . pi� that results from this prior node probabilities ½a1; a2; . . . ; ak� on branch

probabilities bji,
22 where i is the number of a leaf, k is the number of a prior node, j is

the layer of a branch as shown in Fig. 2(b). In order to enhance e±ciency and

accuracy, Dirichlet-tree distribution is introduced into RF framework as D-RF.22,23

The node in each sub-layer of D-RF is a regression learning procedure, so the whole

D-RF is a hierarchical regression learning based on a tree structure. It is noted that

each child node in the sub-layer of the D-RF is related to his parent. Hence, the D-RF

only computes the probabilities of the relative trees in the child layer instead of all

trees' probabilities in the forest. Therefore, D-RF can provide high accuracy and

e±ciency. Meanwhile, multiple leaf models of the D-RF for our tasks are shown in

Fig. 2(d), which include a patch's classi¯cation probability, a head pose probability,

a probabilistic regression model for the locations of the base facial points and a FDM

model.

To address this face analysis problem in the framework of the proposed approach,

we cast it as a joint probability estimation problem and tackle it using the powerful

D-RF. Speci¯cally, we can formulate it as follows, i.e.

ðHyaw;pitch;PtÞ ¼ arg max
H;P

pðHyaw;pitch;Ptj�;CÞ; ð1Þ

where � is the corresponding facial feature space, C is the class label of the facial

patch, Hyaw;pitch, Pt represent head poses and facial feature positions.

Figure 3 gives the overview of the approach. First, in order to eliminate the

in°uence of noise in unconstrained environment, positive/negative patches have

been extracted and classi¯ed within the face area at the top layer of the hierarchical

regression approach (see Fig. 3(a)). Specially, we propose a two iterative procedures

for unconstrained face analysis as Figs. 3(b) and 3(c). We ¯rst get an initial esti-

mation of the head pose and facial feature localization using a hierarchical D-RF

from positive facial patches. The coarse head poses have been estimated at the top

layer, which consists of four sub-layers for 25 head poses in the horizontal and

Fig. 3. The iterative procedures of the proposed approach. (a) Facial patch classi¯cation, (b) the ¯rst

iteration-Initialization and (c) the second iteration-Update.

Y. Liu et al.
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vertical directions. Subsequently, at the bottom layer, under 25 cascaded head poses

and FDMs, the posterior probability of facial feature positions can be obtained by

D-RF in di®erent local sub-regions, i.e.

H 1
yaw;pitch ¼ arg max

H
pðHyaw;pitch j�;CÞ;

P 1
t ¼ arg max

Pt

pðPt jH 1
yaw;pitch;�;CÞ: ð2Þ

For the second iteration, as shown in Fig. 3(c), the shape-related geometric fea-

tures and con¯guration can be extracted from the previously detected facial feature

positions. Re¯ned head poses are updated based on the detected facial feature

localizations and the re¯ned head poses are used to further improve the accuracy of

the facial features using D-RF. As demonstrated in Ref. 26, the shape related geo-

metric features are more robust to lighting changes and occlusion for poses. There-

fore, the re¯ned positions of facial features could be updated and formulated as,

P 2
t ¼ arg max

Pt

pðPt jH 2
yaw;pitch;P

1
t ;�;CÞ: ð3Þ

3.2. D-RF

Each tree T ¼ fTtg in the D-RF is built and selected randomly from a di®erent

subset of the training images. From each facial area, we extract a set of facial patches

fPi ¼ f�i;Ci;Hi;Di jSjgg. The Sj represents the learned probabilitic model using

the prior layer of the D-RF, �i represents texture feature subspace described in

Sec. 3.4.1, Ci ¼ f0; 1g represent the patch class label, only the patch with Ci ¼ 1 can

be used for face analysis, Hi represents the annotated head pose parameters, Di

represents geometry features based on coordinates of facial features points.

We de¯ne a patch comparison feature as simple binary tests ’, similar to Refs. 10,

13 and 18,

jR1j�1
X
k2R1

�ðkÞ � jR2j�1
X
k2R2

�ðkÞ > �; ð4Þ

where R1 and R2 are two random rectangles within the facial patches, �ðiÞ is the

feature space extracted from the Pi, � is a threshold, and k is the pixel within the

rectangles.

The training of a sub-forest in each sub-layer in the D-RF is given below:

(1) Divide the set of patches P into two subsets PL and PR for each ’.

PL ¼ fP j’ < �g; PR ¼ fP j’ > �g: ð5Þ
(2) Select the splitting candidate ’ which maximizes the evaluation function In-

formation Gain (IG).

IG ¼ arg max
’

ðHðP jSjÞ � ð!LHðPL jSjÞ þ !RHðPR jSjÞÞÞ; ð6Þ

Hierarchical Regression Approach for Unconstrained Face Analysis

1556011-7

In
t. 

J.
 P

at
t. 

R
ec

og
n.

 A
rt

if
. I

nt
el

l. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
N

E
B

R
A

SK
A

-L
IN

C
O

L
N

 o
n 

10
/0

8/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



where !R, !L are the ratio between the number of samples in set PL (arriving to

left subset using upper binary tests), set PR (arriving to right subset using upper

binary tests) and set P (total node samples). HðP jSjÞ is the de¯ned class

uncertainty measure and the entropy of the continuous patch labels under the

learned probability model using the prior jth sub-layer of the D-RF.

HðP j ajÞ ¼ �
XN
i¼1

P
i pðCi;Hi;Di jSj;P Þ

jP j log

P
i pðCi;Hi;Di jSj;P Þ

jP j
� �

; ð7Þ

where pðCi;Hi;Di jSj;P Þ indicates the probability that the patch P belongs to

the head pose class Hi and feature point localization Di under the prior prob-

ability model Sj of the jth sub-layer in the D-RF. D-RF models the Dirichlet-

tree probability pðCi;Hi;Di jSj;P Þ in the node and estimates by

pðCi;Hi;Di jSj;P Þ ¼
Z

pðCi;Hi;Di;SjjP Þ � pðSijP ÞPn
i¼1 pðCi;Hi;Di;Sj jP ÞpðSj jP Þ d�: ð8Þ

(3) Create leaf l when IG is below a prede¯ned threshold or when a maximum depth

is reached. Otherwise continue recursively for the two subsets PL and PR at the

¯rst step. Leaves of the D-RF include four learned models (see Fig. 3): (1) a

patch's classi¯cation probability, (2) a head pose probabilistity, (3) a proba-

bilistic regression model for the locations of the base facial points and (4) a

FDM model.

During testing, multiple privileged probabilities are learned by the hierarchical

regression D-RF and then the composite voting model with the estimated state is

used. Details on the hierarchical regression approach are given as following for face

analysis.

3.3. Facial patch classi¯cation

In order to locate face area under various poses and conditions, a cascade of boosted

classi¯ers with Haar-like feature20 has been trained to detect faces with multiple head

pose databases. We have achieved the average detection rate of 94.7% in di®erent

databases. The detected facial area may include some noise for facial analysis, such as

hair, neck and occlusion. In order to eliminate noise, the facial area is segmented into

foreground and background areas. The foreground areas include positive and nega-

tive facial patches, where the positive facial patches contribute to estimate head pose

while the negative facial patches including occlusion or noise may introduce errors for

the task. In the work, we segment background areas based on histogram distributions

¯rst (see Fig. 4). The process of positive facial patch classi¯cation is given in Fig. 5.

Segment background squares: The detected facial area is divided into 6� 6

nonoverlapping squares and histogram distributions of the squares are computed as

shown in Fig. 4. We analyze the uniformity of histogram distributions of the patches

and segment most of the background squares.

Y. Liu et al.
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Classify positive and negative facial patches: 200 patches are randomly

extracted from the rest of areas with background removed, which include positive

and negative facial patches. The positive and negative facial patches are classi¯ed

using RF.10,13,18 In order to model the random tree, the training set of positive facial

patches are labeled as 1 and the negative facial patches are labeled as 0. A tree T

grows up by mutiple texture features of the labeled patches. The training and testing

using the RF is similar to Refs. 10, 13 and 18. When all test patches arrive at leaves of

trees in the forest, we use the probability pðC j ltðP ÞÞ stored at a leaf to judge whether

the test patch belongs to a positive/negative class, where C ¼ 1 represents the

positive patches while C ¼ 0 represents the negative patches. The algorithm diagram

is shown in Fig. 5. The facial patch classi¯cation probabilities stored in leaves is the

privileged information for the next facial analysis. Only the positive facial patch that

was labeled C ¼ 1 can be used for facial analysis.

3.4. Head pose estimation

3.4.1. Training

In our head pose estimation setup, a training sample is a combined feature set,

multiple texture information built from all the positive facial patches available for

Fig. 5. Positive patches extraction and classi¯cation.

Fig. 4. Foreground and background squares.

Hierarchical Regression Approach for Unconstrained Face Analysis
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each of the discrete head poses. From each face image, we randomly extract positive

facial patches fPi ¼ f�i;Hi;Di jSj;Ci ¼ 1gg. Ci ¼ 1 represents the positive facial

patch classi¯ed from facial foreground area. In the following, we simplify the equa-

tions by omitting the decription Ci ¼ 1 for reading conveniently. �i is an achieved

M-PCA feature sub-space extracted from multiple texture features of positive facial

patches. The set of Hi ¼ fH 1
i ; ðH 2

i jH 1
i Þ; ðH 3

i jH 2
i ; c

1
i Þ; ðH 4

i jH 3
i ;H

2
i ;H

1
i Þg is the

output space in the Dirichilet-tree distribution, which contains the annotated dis-

crete angles in di®erent sub-layers of the D-RF, where H 1
i are 3 yaw rotation angles

in the ¯rst sub-layer of D-f1, H 2
i jH 1

i are 5 yaw angles re¯ned from coarse 3 yaw

angles in the second sub-layer, H 3
i jH 2

i , H
1
i are 15 pitch angles under condition of

each yaw angle H 2
i in the third sub-layer, H 4

i jH 3
i , H

2
i , H

1
i are 25 re¯ned angles

based on the above annotated angles in the fourth sub-layer of D-f1. Di represents

geometric features based on coordinates of facial features points.

M-PCA texture feature subspace i: We extract the multiple texture fea-

tures xj
i ; j ¼ 1; 2; 3 in the each facial patch resized of 30� 30. x1

i contains Gabor

feature descriptors at ¯ve angles and seven scales with dimension as 35� 30� 30, x2
i

represents Sobel feature descriptors at horizontal and vertical directions with di-

mension as 2� 30� 30 and x3
i is the LBPH feature descriptors with dimension as

30� 30.

Because of the high dimension in multiple texture features, subspace projection is

used to reduce the dimension as well as to extract the most essential information for

classi¯cation/representation. PCA is a popular subspace representation method. An

achieved method M-PCA based on PCA is proposed to extract subspace from tex-

ture model. For the clarity of presentation, in the following sections, the data set is

denoted as Ti ¼ fxj
ig; i ¼ 1; 2; . . . ;Nj; j ¼ 1; 2; 3.

X
¼ 1P3

j¼1

PNj

i¼1 Nj

X3
j¼1

XNj

i¼1

ðxj
i � �Þðxj

i � �ÞT ;

� ¼ 1P3
j¼1

PNj

i¼1 Nj

X3
j¼1

XNj

i¼1

xj
i ;

ð9Þ

where j is the number of the texture feature channels and Nj is the number of feature

dimensions in the jth channel. The principal components are computed by solving

the eigenvalue problem:
P

V ¼ �V , where ^ ¼ diagð�1; �2; . . . ; �nÞ is the diagonal

matrix whose nonzero entries �1 > �2 > � � � > �n are the corresponding eigenvalues

of
P

. And V is the matrix whose columns are the corresponding eigenvectors. The

reduced PCA subspace is formed by the ¯rst P eigenvectors. An achieved M-PCA

subspace is projected by the sum of n eigenvectors, which is used to generate the

binary testing in the training of the D-RF as Eq. (4) (see Fig. 6(b)).

�i ¼ vT
i

�
Xn
i¼1

ðxj
i � �Þ: ð10Þ

Y. Liu et al.
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Geometric features Di: Di ¼ ðdni;En j afÞ represents geometric features in-

cluding Euclidean distances between points and FDM, where dni represents theN 2D

displacement vectors from the centroid of the positive facial patch Pi to each of the

facial feature points Pn, and En is the FDM that is de¯ned the N vectors of each

facial point and the facial center point F (see Fig. 6(c)), where N is the number

of facial points. af is the sub-forest in di®erent regions of the face in D-RF.

dni ¼ jjPn � Pi jj2; En ¼ jjGn � F jj2; n ¼ 1; 2; . . . ;N: ð11Þ

3.4.2. Testing

Each positive facial patch is then fed to the trees in the relative sub-layer of the D-RF

in D-f1. At each node of a tree, the patches are evaluated according to the stored

binary test and passed either to the right or left child until a leaf node is reached. By

passing all the positive facial patches down the D-RF for head pose estimation, each

positive facial patch Pi ends in a set of leaves L of the di®erent sub-forest of D-RF

instead of ending all leaves of the RF. In each leaf l, there are classi¯cation proba-

bilities of head pose distributed by a multivariate Gaussian as in Refs. 10 and 18:

pðHi j lSj
Þ ¼ NðHi jSj;Hi jSj ;�Hi jSj

Þ; ð12Þ

where Hi jSj and �Hi jSj
are the mean and covariance matrix of the head pose

probabilities of the sub-forest Sj in the jth layer D-RF.

When the patch reaches to the leaves of the sub-forest, the next sub-forest of

D-RF should be loaded based on the class decision CðP Þ. The class decision function

of the sub-forest is de¯ned as,

CðP Þ ¼ arg max
Sj2Hi

pðHi jSj;P Þ; ð13Þ

where pðHi jSj;P Þ is the head pose probability of D-RF in condition of sub-forest Sj

of the jth sub-layer. The head poses are then obtained by performing adaptive

Gaussian mixture model (GMM)7,22 for voting.

(a) (b) (c)

Fig. 6. The training data from a combined feature set. (a) Head image, (b) M-PCA from multiple texture

models and (c) geometry features.

Hierarchical Regression Approach for Unconstrained Face Analysis
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3.4.3. D-RF for head pose estimation in the ¯rst iteration

In order to obtain initial head pose estimation in the ¯rst iteration, the D-RF is

trained as described in Sec. 3.2. As shown in Fig. 7, the proposed D-RF consists of

four sub-layers for head pose estimation in the D-f1. Since it is di±cult to obtain

continuous ground truth head pose data from 2D images, we annotate rotation

angles as \�1, 0, 1" and \�2, �1, 0, 1, 2" in two layers. \�1, 0, 1" represent yaw

rotation angles as \�90�; 0�; 90�", and \�2, �1, 0, 1, 2" represent re¯ned yaw

rotation angles as \�90�;�45�; 0�; 45�; 90�". We store the multivariate adaptive

Gaussian distribution in the leaf as de¯ne in Eq. (12). The Dirichlet-tree distribution

is improved to the D-RF for our task as Fig. 7. Figure 7(a) shows the framework of

head pose estimation using D-RF in the horizontal direction, where a is the esti-

mation result in the horizontal direction, and D-L1 and D-L2 are two sub-layers in

the horizontal direction in D-f1. Then, ¯ve yaw angles can be estimated in the second

sub-layer of the D-f1.

After the yaw angles have been classi¯ed, pitch angles are estimated under the

condition of the classi¯ed yaw angles a. Figure 7(b) shows the framework of esti-

mation using D-RF in the vertical direction. And the angle annotations in the ver-

tical direction are similar to horizontal rotation angles. When the patches are sent

down through all vertical sub-layers in D-RF, sub-trees are selected from sub-forests

in D-L3 and D-L4 sub-layers of the D-RF using Eq. (13). Finally, we can estimate 25

discrete yaw and pitch angles that are stored at leaves of the D-RF, i.e.

f90�; 90�g; f90�; 45�g � � � f0�; 0�g � � � f�45�;�90�g; f�90�;�90�g.

3.5. Multiple facial feature detection

3.5.1. D-RF for facial features detection in local sub-regions

After 25 head poses have been estimated, D-RF is also used to detect multiple facial

points under the conditions of the estimated head poses in the D-f2. The framework

of the D-RF for head pose estimation can be used in principle for predicting

(a) (b)

Fig. 7. Head pose estimation by the D-RF in the D-f1 in the ¯rst iteration. (a) Head pose estimation in

the horizontal direction and (b) head pose estimation in the vertical direction.

Y. Liu et al.
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continuous parameter of the face, hence the modi¯cations for localizing facial fea-

tures are straight forward. The set of training facial positive patches is assumed as

fPi ¼ f�i;Di jHi;Ci ¼ 1gg, as Sec. 3.4.1. Di ¼ ðdni;En j afÞ represents geometric

features including Euclidean distances between points and FDM under the condition

of privileged head pose models in di®erent sub-regions of the face. The most dis-

criminative local sub-regions are found using Adaboost with Haar-like features,20 i.e.

the mouth, nose and eyes sub-regions. The algorithm pseudocode is given in Fig. 8.

Facial feature detection can be obtained based on estimated head pose by D-RF, and

also could help to update re¯ned head pose angles based on their geometry con¯g-

uration in the second iteration.

Patches from local sub-regions are allowed to predict the locations of local points

under estimated head poses. It can avoid a bias towards the average face due to the

long distance voting. We reduce the in°uence of patches from di®erent head poses,

face deformation and sub-regions. We measure the con¯dence pf of a positive patch

P for the location of a feature point n by

pf / exp
jjdnijHi; af jj2

�

 !
� exp

jjEnjHi; af jj2
�

 !
: ð14Þ

The constant � is used to control the steepness of this function. A positive patch to

vote only is allowed for feature points with a high con¯dence pf. The probabilistic

model of a sub-forest af of di®erent sub-regions of D-RF is modeled as

pðdni;En jHi; af ;P Þ ¼ 1

Tf

X
i

XKf

t¼1

pðdni;En j lt;af ;Hi
ðP ÞÞ; ð15Þ

where lt;af ;Hi
ðP Þ is the leaf of tree t in a sub-region of D-f2 under head pose Hi. The

Kf is the number of trees of a sub-forest. Leaves will be learned if En is in the

prede¯ned FDM. In a leaf of the sub-forest af , pðdlðP ÞÞ represents the probability

whether the positive facial patch should belong to a feature location

pðdlðP ÞÞ ¼ N dl; dl ;
X
dl

 !
;

Fig. 8. The pseudocode of the D-RF for facial features detection.

Hierarchical Regression Approach for Unconstrained Face Analysis
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dl ¼ dni;En j lt;af ;Hi
;

ð16Þ
where dl and

P
dl denote the mean value and covariance matrix of feature location

regression probabilities.

3.5.2. Composite weighted voting

We use a composite weighted voting method in a cascaded way. Both classi¯cation

and regression voting are used to the D-RF. In order to eliminate imbalance of

samples, we also store the weight ws ¼ PS=P that is de¯ned as the ratio of samples in

a subset PS and full samples P in each single tree of the D-RF. If multiple votes for

the feature point Pt is DyiðPt j af ;H;SÞ in the patch location yi, then we set

the composite weighted voting model to be given as V ðPtÞ / KððwsDyi�
ðyi þ wsDyi ÞÞ=hiÞ. A Gaussian Kernel K and the bandwidth parameter hi are given

by GMM. In Dyi , H ¼ fyaw; pitchg represents the classi¯ed voting result for head

pose, then regression voting can obtain good results by evaluating on sparse positive

facial patches, rather than at every positive patch by using all forests. Meanwhile,

the competing method is casting GMM voting that is similar to Ref. 23. The 10 facial

feature points' locations Pt are obtained by performing mean-shift in V ðPtÞ for each
point t. After facial feature points have been detected, they could help to update

head poses in the second iteration.

3.6. Update head poses and facial feature positions

in the second iteration

After the positions of the facial feature points have been detected, re¯ned head pose

angles can be estimated directly from the con¯guration of these points. Our method

for re¯ned head pose estimation uses the extracted feature points (i.e. the inside and

outside corners of each eye, the outside corners of the mouth, and the tip of the nose),

and the facial symmetry axis is found by connecting a line between the midpoint of

the eyes and midpoint of the mouth.26 Under the assumption that all four eye points

are assumed to be coplanar, the yaw angle can be determined from the observable

di®erence in size between the left and right eye due to projective distortion from the

known camera parameters. The pitch angle is determined by comparing the distance

between the nose tip and the eye-line to an anthropometric model. The update

re¯ned head pose could be used to extend facial features using the D-RF in the

second iteration (see Fig. 2).

Based on the currently updated head pose H 2
yaw;pitch and the initial facial feature

positions P 1
t , the ¯nal facial features P

2
t could be improved precisely using updated

D-RF in the second iteration. The current sub-forests are updated and loaded based

on re¯ned head poses. The testing for facial feature localization is similar to Sec. 3.5.

Under re¯ned head poses, we could achieve better performance for the facial feature

localization.

Y. Liu et al.
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4. Experiments

In this section, we thoroughly evaluate the proposed D-RF approach for uncon-

strained face analysis, i.e. head pose estimation (Sec. 4.1), and facial feature detec-

tion (Sec. 4.2) in the two iterative procedures.

The proposed approach have been tested under various experimental conditions,

such as Pointing'04 head pose database,17 LFW database19 and our lab database (see

Fig. 9). The Pointing'04 database consists of 2940 images with di®erent poses and

expressions. The LFW database consists of 5749 individual facial images and 13,300

images. The images have been collected in the wild and vary in poses, lighting

conditions, resolutions, races, occlusions and make-up. Our lab database includes

3000 images of di®erent students with head poses, expressions and occlusions, and

the reference angles have been annotated using the method similar to LFW.19 When

extending the D-RF framework for the purpose of facial feature localization, once

again a large dataset of annotated range images of faces is needed. While the LFW is

annotated with facial point locations, it has not large variations in range head poses.

We additionally annotated 6940 faces taken from Pointing'04 and our lab database

with the location of 10 facial feature points shown in Fig. 9. We used Amazon

Mechanical Turk, labeling each ¯ducial point at least three times and taking the

mean of the annotations as ground truth.

For evaluation, we divided the databases into a training set and a testing set. The

training set consists of 2100 images from Pointing'04 database and 13,000 images

Fig. 9. Examples of images from the datasets, Pointing'04 database (the ¯rst row), LFW database (the

second row) and our lab database (the third row).

Hierarchical Regression Approach for Unconstrained Face Analysis
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from LWF datasets. The testing set includes the rest of 840 images from Pointing'04

database, 500 images from LFW database and 200 images from our lab database.

4.1. Head pose estimation

4.1.1. Evaluation methodology

In order to evaluate the proposed approach, estimation accuracy is de¯ned as the

ratio of the number of correct estimation samples to the number of testing images. In

D-f1, let Y0;Y1;Y2;Y3;Y4 be the estimation accuracies of 5 yaw angles and P0;P1;

P2; . . . ;Pn be the estimation accuracies of the pitch angles under the correspondent

yaw angle. QðPi jYiÞ denotes the ¯nal estimation accuracy in leaves of the last

sub-layer, which is de¯ned as:

QðPi jYiÞ ¼
hPi;Yii � PiPn
j¼1hPj;Yii � Pj

: ð17Þ

4.1.2. Experiments in the ¯rst iteration

(1) Training

For the head pose estimation, we trained the trees in three di®erent databases. We

¯xed some parameters on the basis of empirical observations, e.g. the trees have a

maximum depth of 15 and at each node we randomly generate 2000 splitting can-

didates and 25 thresholds. Other parameters include the number of patches

extracted from each image (¯xed to 200), the patch size, and the maximum size of the

sub-patches de¯ning the areas R1 and R2 in Eq. (4).

Figure 10 describes the performance of the algorithm when we varied the

size of the facial patches and the number of samples used for training each tree. In

Fig. 10(a), the blue, continuous line shows the percentage of estimation accuracy as

the patch size, when 300 training images per tree are used. The red, dashed line

shows instead the percentage of false estimation rate as the patch size. The plot

shows that a minimum size for the patches is critical since small patches cannot

capture enough information to reliably predict the head pose. However, there is also

a slight performance loss for lager patches. In the case, the trees become more sen-

sitive to occlusions and strong artifacts like holes since the patches cover a large

region and overlap more. Having a patch size between 30� 30 seems to be a

good choice where the patches are discriminative enough to estimate head pose.

Figure 10(b) also shows accuracy and mean error rate, this time for 30� 30 patches,

as a function of the number of training images. It can be noted that the performance

increases with more training images in one tree, but it also saturates for training

subsets containing more than 300 images.

Each tree grows based on a randomly selected subset of 300 images. Each image in

the dataset is manually annotated with one out of the 25 head pose labels. Sub-

forests in di®erent sub-layers of D-RF have been trained independently from the ¯rst

Y. Liu et al.
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sub-layer to the fourth sub-layer. There are 15 trees in the ¯rst sub-layer D-L1, 15

trees in the second sub-layer D-L2 and ¯ve trees in each head pose of the prior sub-

layer. In the third sub-layer D-L3, we trained 15 trees in total, where three trees in

each head pose of the second sub-layer. In the fourth sub-layer D-L4, we trained 30

trees in total, where two trees in each head pose under the prior sub-layers.

(2) Testing

Testing parameters include the training parameters of RF, the Dirichlet-tree layer

numbers, and the adaptive GMM parameters. Unless stated otherwise, those para-

meters in sub-forests were similar to training in all of our experiments. Other

parameters are automatically estimated during testing from a validation set gener-

ated. Firstly, the faces extracted by our trained Adaboost detector with Haar-fea-

tures have been normalized to 125� 125 pixels. Then, we densely extract positive

facial patches from a facial foreground area and sent them down through all sub-

layers in the D-f1 in the hierarchical way.

Figure 11 shows accuracies using di®erent sub-layers of the D-RF for 25 head pose

classes estimation in the D-f1 of the ¯rst iteration. L0 represents the average accu-

racy of 25 head pose classes using the original RF. While L1 to L4 represent the

accuracies of 25 head pose classes using hierarchical 1 to 4 sub-layers of the D-RF.

(a) (b)

Fig. 10. (Color online) The performance as patch size and training images. (a) Estimation accuracy

depending on the patch size (when using 300 training samples), overlaid to the mean error rate.

(b) Estimation accuracy and mean error rate depending on the number of training data (for 30� 30
patches).

Hierarchical Regression Approach for Unconstrained Face Analysis
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L1 and L2 represent the estimated average accuracies of 25 head pose classes using

only one sub-layer (i.e. D-L1) and two sub-layers (i.e. D-L1 and D-L2) in D-RF,

respectively. L3 and L4 represent the estimated average accuracies of 25 head pose

classes using three sub-layers (i.e. D-L1, D-L2 and D-L3) and four sub-layers (i.e.

D-L1, D-L2, D-L3 and D-L4) in D-RF, respectively. As shown in Fig. 11, the ¯nal

accuracy of original RF reaches to 63.23%, and the proposed approach improves the

accuracy with the introduction of the di®erent sub-layers of the Dirichlet-tree. The

optimal estimation accuracy is 71.83% using four sub-layers of the D-RF.

(3) Performance comparison

In order to evaluate the contributions of using the D-RF in the D-f1, we compare our

method with original RF.4 Figure 12(a) shows the experiment results, where the blue

bars represent estimation accuracies using D-RF and the red bars represent esti-

mation accuracies using RF. Additionally, the mean error of each head pose is shown

in Fig. 12(b). The average accuracies of the D-RF and RF are 71.83% and 62.23%,

respectively. The D-RF provides higher average accuracy and lower mean error than

RF in the horizontal and vertical directions.

4.1.3. Re¯ned head pose estimation in the second iteration

To show the generalization capability of our approach, we evaluate the accurate

rates of head pose estimation in the ¯rst and second iteration through our algorithm

on the Pointing'04 database. As shown in Fig. 13, the performance of head pose

Fig. 11. Accurate comparisons in di®erent sub-layers of the D-RF in D-f1.

Y. Liu et al.
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estimation is improved through updated algorithm based on facial features con¯g-

uration, where the green bar represents the average accuracy in the second iteration

by our iterative approach, the orange bar represents the average accuracy in the

initial head pose estimation by D-RF in the ¯rst iteration. The average accuracy of

re¯ned head pose reached 85.9% in the second iteration. Compared to the initial head

pose estimation, the performance of re¯ned head pose has higher accuracy.

We have also extensively compared the proposed approach with other state-of-

the-art algorithms, i.e. initial D-RF, RF,4 SVM multi-class.27 Initial D-RF means the

Fig. 13. (Color online) Accuracies of head pose estimation with di®erent iterative times on Pointing'04

database.

(a) (b)

Fig. 12. (Color online) The comparison of the D-RF and RF in the D-f1 of the ¯rst iteration. (a) Accuracy

and (b) Mean error.
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D-RF used in the ¯rst iteration of our proposed iterative approach. The comparative

results are shown in Table 1, including accuracy, mean error and computation time.

The experimental result on SVM multi-class is quoted from their papers, whose ¯nal

results provided the accurate rate of 60.4%. The RF directly estimated 25 head poses

in the horizontal and vertical directions simultaneously and provided the accurate

rate of 62.23%. Our proposed iterative approach in the case outperformed the other

algorithms. The estimated accuracy reached 85.9% and computation time is 0.2115 s.

Thanks to facial feature con¯guration, the results of proposed iterative approach are

also better than the results estimated by initial D-RF.

4.2. Multiple facial feature detection

4.2.1. Evaluation methodology

We measure the localization performance using the inter-ocular distance (IOD)

normalized error, de¯ne en as localization error,

en ¼ jjI G
n � I D

n jj2
IIOD

; ð18Þ

where I G
n is the ground truth location of point n in the face, I D

n is the detected

location of the point n, and IIOD is the inter-ocular distance, which is de¯ned as the

distance between the eye centers. We declare a point correctly detected if the pixel

error is below 0.1 IOD.

4.2.2. Experiments and analysis

Experimental parameters for the task include the pf (see Eq. (15)) which limits the

impact of distant votes is 0.25, the maximize o®set distant between facial points and

center location of random face patches is 40, the number of mean-shift iterations is 7,

the bandwidth of the mean-shift kernel is 10. And the parameters of shape defor-

mation distant of di®erent head poses are automatically estimated during testing a

validation set generated from the testing data by randomly extracting positive

patches from every testing image. The most important parameter turns out to be pf.

When pf is equal to zero, all patches contribute to the mean shift, while only patches

in a small neighborhood are taken into account when it is close to one. Figure 14

shows the impact of pf on the average accuracy detection of all facial feature points.

If pf ¼ 0, it means that the detector tends towards the all patches from a face and

Table 1. Comparison of the proposed approach with state-of-the-arts.

Approaches Accuracy (%) Mean Error (%) Time (s)

Our iterative approach 85.9 14.1 0.2115
Initial D-RF 71.83 23.4 0.20375

RF 62.23 36.3 0.99095

SVM multi-class 60.4 38.2 —

Y. Liu et al.
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the accuracy is below 60%. When pf moves around 0.2, it means that the detector

depends on local patches in the local sub-regions and the performance increases

signi¯cantly over 70%. When pf comes around 0.4, it means that the detector relies

more on the 25 head poses and FDM models in local sub-regions, the accuracy

reaches to about 90%. When pf becomes very large (> 0.8), the approach fails due to

the small number of patches to vote.

Fig. 14. Averaged accuracies with di®erent values of the parameter pf.

Fig. 15. D-RF with FDM versus without FDM.
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To evaluate the e®ectiveness of the prede¯ned FDM, the average detection ac-

curacies of the D-RF with FDM and the D-RF without FDM are given in Fig. 15.

The comparison results show that the D-RF with FDM provides higher accuracies

than the D-RF without FDM under estimated 25 head poses, particularly, under the

head poses of large rotation angles.

Table 2 shows the accuracy of each facial feature point using the proposed ap-

proach through two iterative procedures, when pf ¼ 0:4. Lower outside lip detection

is the most di±cult because of facial occlusion and deformation in wide angles of head

poses. And the performance is over 89.54% in average using the proposed approach.

4.3. Comparison with state-of-the-art methods

In this subsection, we compared the proposed approach with the state-of-the-

art methods for ¯nal facial feature detection, i.e. D-RF in the ¯rst iteration,23

conditional random forests (C-RF),10 and RFþViola&Jones method14,21 on the

Table 2. Accuracy rate of each facial point (%).

Facial Feature Point Accuracy Mean Error

Left eye outside corner (LEOC) 88.3 6
Left eye inner corner (LEIC) 89.7 5.7

Right eye outside corner (REOC) 88.2 6.4

Right eye inner corner (REIC) 93.4 4.8

Left nostril (LN) 87.5 5.6
Right nostril (RN) 92.6 4.7

Left mouth outside corner (LMOC) 89.3 5.3

Right mouth outside corner (RMOC) 92.5 4.9
Upper outside lip (UOL) 86.3 7.5

Lower outside lip (LOL) 87.6 6.4

(a) (b)

Fig. 16. (Color online) Comparison to other methods. (a) Detection accuracy of each feature point and

(b) mean error of each feature point.
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Pointing'04 database. The trained D-RF models have been generated from the LFW,

Pointing'04 and our lab databases. The comparison results are shown in Fig. 16,

where initial D-RF is also the D-RF used in the ¯rst iteration of our approach.

Figures 16(a) and 16(b) demonstrate the accuracy and mean error of each facial

point. Here, the dark blue bars represent the results of the two times interative

approach in the paper, the light blue bars represent the results using initial D-RF,

the red bars show the results detected by C-RF and the yellow bars show the results

of RF+Viola&Jones method. As it can be seen, our approach performs better than

the others on the Pointing'04.

The experiments have been conducted on a PC with Intel(R) Core(TM) i5-2400

CPU@ 3.10GHz. The comparison of computation time is given in Table 3. From the

Fig. 17. Examples of the detected facial feature points using the iterative approach.

Table 3. Computation time (/second) of the proposed approach, Initial D-RF,
C-RF and RF.

Positive Patch Head Pose Facial Feature
Approaches Classi¯cation Estimation Detection Total

Iterative approach 0.016914 0.2115 0.705403 0.933817

Initial D-RF 0.016914 0.20375 0.456094 0.676748

C-RF — 0.57758 0.41337 0.99095

RF — 0.87659 0.6412 1.51779

Hierarchical Regression Approach for Unconstrained Face Analysis
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table, one can see that the D-RF with two iterative procedures is faster than the

C-RF and RF but a little bit slower than the initial D-RF. The total computation

time for facial analysis is 0.933817 s using our proposed iterative approach, 0.676748 s

using initial D-RF,22 0.99095 s using C-RF10 and 1.51779 s using RF.4 They do not

rely on special GPU. Additionally, some examples of detection results are shown in

Fig. 17. The proposed approach in two iterative procedures performs well under some

wide range head pose variations, occlusion, di®erent illumination and noise.

5. Conclusions

In this paper, we propose a robust and e±cient approach for face analysis under

unconstrained environment based on a hierarchical regression framework. The

proposed D-RF introduces Dirichlet-tree probabilistic model into regression RF

framework in the hierarchical way. First, in order to eliminate the in°uence of noise

and background in the facial area, a robust negative/positive facial patch extraction

and classi¯cation method is proposed. Then, the D-RF works in the two iterative

procedures to enhance the accuracy. Coarse head pose is estimated to constrain the

facial feature detection, and the head pose is updated based on the detected facial

features, iteratively, the facial feature localization is re¯ned based on the updated

head pose. Furthermore, in order to improve the e±ciency and robustness, multiple

probabilistic models are learned in leaves of the D-RF, i.e. the patch's classi¯cation,

the head pose probabilities, the locations of facial points and a FDM. Moreover, our

algorithm takes a composite weight voting method, where each patch extracted

from the image can directly cast a vote for the head pose or each of the facial

features. Experiment results show that the proposed approach bene¯ts facial anal-

ysis in unconstrained environment. The proposed approach outperforms the state-

of-the-art approaches on three di®erent databases. In future work, more complex

models could be introduced into 2D/3D unconstrained face analysis, such as ex-

pression model. This approach could be extended to detect a person's direction of

attention in a wide scene, e.g. the students' attention and expression in a classroom

scene. Advanced massively parallel computing technologies41,42 should be incorpo-

rated to support real-time applications.
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