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ABSTRACT

Cross-domain object detection is a very challenging task due
to multi-level domain shift in an unseen domain. To address the
problem, this paper proposes a hierarchical domain-consistent net-
work (HDCN) for cross-domain object detection, which effectively
suppresses pixel-level, image-level, as well as instance-level domain
shift via jointly aligning three-level features. Firstly, at the pixel-
level feature alignment stage, a pixel-level subnet with foreground-
aware attention learning and pixel-level adversarial learning is pro-
posed to focus on local foreground transferable information. Then,
at the image-level feature alignment stage, global domain-invariant
features are learned from the whole image through image-level ad-
versarial learning. Finally, at the instance-level alignment stage,
a prototype graph convolution network is conducted to guaran-
tee distribution alignment of instances by minimizing the distance
of prototypes with the same category but from different domains.
Moreover, to avoid the non-convergence problem during multi-level
feature alignment, a domain-consistent loss is proposed to harmo-
nize the adaptation training process. Comprehensive results on
various cross-domain detection tasks demonstrate the broad appli-
cability and effectiveness of the proposed approach.

Index Terms— Cross-domain object detection, hierarchical fea-
ture alignment, domain-consistent loss, foreground-aware attention,
adversarial learning

1. INTRODUCTION

Recent years have witnessed great progress in deep learning based
object detection. However, due to the domain shift problem, apply-
ing off-the-shelf detectors to an unseen domain leads to significant
performance drop [8]. Therefore, it is a very challenging task for a
detection model to adapt the domain shift from the source domain to
an unseen target domain [14].

To address the domain shift problem, existing cross-domain de-
tection methods can be generally divided into two categories. The
first category is generation and fine-tuning based methods. Inoue
et.al. [12] and A. RoyChowdhury et.al. [18] improved adaptability
of the detection model in the target domain through fine-tuning uti-
lizing pseudo and soft labels. Wang et.al. [21] and V. F. Arruda et.al.
[1] proposed a generator network to further learn the feature differ-
ence between the source and target domains. These methods have
achieved promising results in some specific scenes. Nevertheless, it
still remains difficulty to guarantee the quality of generated images
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and labels, especially in some extreme cases such as complex traffic
scenes, which may undermine the adapted results.

Methods in the second category focus on domain feature align-
ment in different levels, such as the pixel, the image, and the in-
stance level [10]. Most of the previous methods learn feature adap-
tion in one or two-level feature alignment. Chen et.al. [4] used
adversarial domain adaption at image-level and instance-level align-
ment; Xu et.al. [23] generated graph prototypes to guide instance-
level domain alignment, and achieve good results on common tasks.
Besides, Chen et.al. [3] performed adversarial learning and regu-
larization for alignment at three levels. Although promising results
have been reported, further improvement suffers from the following
limitations. Firstly, due to the complexity of cross-domain object
detection, one or two-level feature alignment methods are difficult
to align the whole process of domain shift, which limits the ability
of domain adaption learning. Secondly, the training of three-level
feature-aligned method is easy to be non-convergent due to complex
construction and lots of parameters.

To address the above limitations, this paper proposes a hierar-
chical domain-consistent network (HDCN) for cross-domain object
detection. It consists of pixel-level, image-level, and instance-level
feature alignment subnets for effectively learning domain-invariant
features at three levels. The architecture of the proposed method is
shown in Fig.1. Moreover, a joint multi-loss with three-level losses
and a domain-consistent regularization loss is proposed to optimize
the whole network in an end-to-end manner.

This study makes the following research contributions:

1. An effective three-level domain adaptation object detection
method, called HDCN, is proposed for solving the multi-level
domain shift problem. Extensive experiments show that the
HDCN outperforms existing state-of-the-art methods, with
the highest accuracies of 51.6% and 45.9% on two cross-
domain tasks respectively.

2. At pixel-level feature alignment stage, two adaptive modules,
i.e., the foreground-aware attention (FAM) and pixel-level ad-
versarial learning, are adopted to focus on local foreground
transferable information.

3. To avoid the non-convergence problem during multi-level
feature alignment, a domain-consistent regularization loss is
proposed to harmonize the adaptation training process.

2. PROPOSED METHOD

The structure of our proposed method is shown in Fig.1. To address
domain shift in multiple levels, the HDCN consists of pixel-level,
image-level, and instance-level feature alignment subnets and is op-



Fig. 1. HDCN architecture. Our method performs three-level feature alignment (i.e., pixel-level, image-level, and instance-level) for domain
adaption in a mutually-reinforced manner. Note: GRL denotes the gradient reversal layer, FAM is a foreground-aware attention module, and
PGCN is a prototype graph convolutional network.

timized by a joint multi-loss with a domain-consistent regularization
loss. Details are given in the following.

2.1. Pixel-level feature alignment

At the pixel-level feature alignment, two adaption modules, i.e.,
foreground-aware attention learning and pixel-level adversarial
learning, are designed for exploring and aligning foreground trans-
ferable information.

Fig. 2. Pixel-level domain alignment subnet.

2.1.1. Foreground-aware attention for pixel transfer

Pixel-level local information in object detection is not all transfer-
able, such as the background. Forcefully aligning the untransfer-
able information leads to negative transfer [22]. Therefore, we intro-
duce the FAM to focus on foreground transferable information and
weaken the background untransferable information.

As shown in Fig.2, given an input feature map F1 extracted from
the backbone, we first apply average-pooling and max-pooling oper-
ations for down-sampling and then concatenate them to generate an
efficient feature descriptor. A 1 × 1 convolution and element-wise
multiplication is used to achieve a foreground transferable map via
learning a spatial attention. The foreground transferable attention
map F ′ is given by:

F ′ = A(F1)⊗ F1 (1)

where A(•) denotes the FAM and ⊗ denotes element-wise multi-
plication. The F ′ has more significant difference between the fore-

ground and background. Spatial attention mechanism is capable of
re-weighting each pixel value according to its contribution. As a
result, foreground pixels are re-weighted by higher weights. There-
fore, negative transfer caused by background could be addressed,
resulting in more effective pixel-level feature alignment.

2.1.2. Pixel-level adversarial learning for feature alignment

After achieving foreground transferable information, pixel-level ad-
versarial learning is used to further align local domain-invariant fea-
tures through the gradient reversal layer (GRL) [6] and a pixel-level
domain classifier. Specifically, a pixel domain classifierCpix tries to
distinguish which domain the foreground transferable attention fea-
ture F ′ comes from, while B′, the shallow layers of the backbone,
aim to confuse the classifier. In fact, Cpix and B′ are connected by
the GRL, which reverses the gradients that flow through B′. This
module is trained in an adversarial learning manner. Formally, the
loss function of pixel-level adversarial learning Lpix can be written
as:
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where s and t respectively denote source and target domains and
n represents the number of input images. F ′

ti and F ′
si are the ith

foreground transferable attention feature maps with the size of H ×
W from the target and source domain respectively. w and h are the
coordinates on the above feature maps. During training, to obtain
domain-invariant features, the network seeks the parameters θB′ of
the shallow layers of the backbone via maximizing the loss, while
simultaneously seeking the parameters θCpix of the domain classifier
via minimizing the loss.

Combining adversarial learning with the spatial attention mech-
anism, the pixel-level subnet aligns the domain-invariant feature dis-
tributions of foreground regions that are more transferable for the
detection task.



2.2. Image-level feature alignment

Due to large discrepancy at image-level features of different do-
mains, we design an image-level feature alignment subnet composed
of a GRL and image-level domain classifier Cimg , after the back-
bone B. Unlike pixel-level domain classifier, the image-level do-
main classifier determines the domain of the whole feature map.
Similar to the adversarial training in Sec.2.1, the whole backbone
B tends to maximize the image-level loss and confuse image-level
domain classifier. By this way, the ability to extract image-level
domain-invariant features is obtained. To accomplish that, a jointly
image-level loss function Limg with a focal loss [15] is defined as
follows,
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where γ is the weight parameter focusing on hard samples. θB de-
notes the parameters of the whole backbone. Fti and Fsi are the
ith output feature maps of the backbone B from target and source
domain respectively.

2.3. Instance-level feature alignment

Since supervisory signal is lacked on target domain, foreground ob-
ject instances are normally represented by a bunch of inaccurate re-
gion proposals. To align source and target domain at instance-level, a
prototype graph convolution network (PGCN) is conducted to guar-
antee the invariation of instance localization and classification in dif-
ferent domains. As shown in Fig.1., the PGCN is used to extract
prototypes of each class from the embedding features learned from
the RoIs by RPN [17] and bounding boxes by the classification and
regression network. Following [23], an intra loss is introduced to
minimize the distance between the prototypes of the same class in
the source domain and the target domain, meanwhile, an inter loss
is to increase the distance between different classes in two domains.
The jointly instance-level loss Lins with an intra loss and three inter
losses are defined as

Lins =
1

3
(Linter(s,s)+Linter(t,t)+Linter(s,t))+Lintra(s,t), (8)

where Linter(s,s) and Linter(t,t) are the inter loss from different
classes in the same domain, while Linter(s,t) represents the inter
loss from different classes in different domains. Lintra(s,t) is the
intra loss from the same class in different domains.

Through category prototype alignment, localization and classi-
fication of object instances tend to be domain-invariant.

2.4. Domain-consistent loss in three-level domain alignment

To optimize the HDCN in an end-to-end way, we propose a consis-
tent regularization loss to constrain the domain adaptation in differ-
ent levels. The domain-consistent loss is given by:

Lcst = β
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where Euclidean distance is used to measure the divergence between
the prediction results in two levels. ppixuv is the pixel-level classi-
fication probability at the pixel (u, v) of the feature map, and pimg
is the classification probability of the whole feature map. β is an
empirical parameter and set as 5 in this study. By minimizing Lcst,
the prediction results of image-level and pixel-level domain tend to
be the same, so as to make domain adaptation directions consistent.

Furthermore, to further constrain the instance-level training of
domain adaptation, the total loss LTol with jointly three-level losses,
the domain-consistent loss, and the detecting loss Ldet of Faster
RCNN is written as:

LTol = Lpix + Limg + Lins + Lcst + Ldet. (10)

3. EXPERIMENTS

In this section, we provide comprehensive experimental results on
two cross-domain detection tasks with distinct domain shift, includ-
ing Synthetic to Real (SIM 10k [13] → Cityscapes [5]) and Cross
Camera Adaptation (KITTI [7]→ Cityscapes [5]).

3.1. Experimental setup

The experiment environment is a single Geforce GTX2080Ti of 64
bit Ubuntu operating system, which is implemented based on Py-
torch framework. VGG16 [20] and ResNet50 [9] were used as the
backbone in the synthetic-to-real task and the cross camera task, re-
spectively. The SGD optimizer is selected for training, the initial
learning rate is set to 0.001, and the learning rate decay rate and de-
cay step are set to 0.1 and 5 respectively. Besides, we utilize the
learning rate warm-up strategy during the first 200 steps when train-
ing. During training, bounding box labels only exist in source do-
main, while image domain labels exist in both two domains, guiding
the domain alignment. For better comparison, we performed source-
only evaluation with training only on the source datasets and testing
on the target datasets, by using the Faster RCNN [17].

3.2. Synthetic to real task

In this experiment, SIM 10k [13] is employed as the source do-
main and Cityscapes [5] serves as the target domain. During train-
ing, we utilize the common car category with 10000 source samples
and 2,975 target samples; for testing, we use the validation split of
Cityscapes with 500 samples.

Table 1 compared our method with state-of-the-art methods, in-
cluding Source-only [17], DA [4], SW-DA [19], MTOR [2], and
GPA [23]. The AP of our method reached 51.6%, which outper-
formed all results of other methods. It demonstrates the advantage
of the proposed three-level HDCN method.

Table 1. Experimental results of SIM 10k→ Cityscapes
Methods car AP(%)

Source-only [17] 34.6
DA[4] 41.9

SW-DA[19] 44.6
MTOR[2] 46.6
GPA[23] 47.6

HDCN(ours) 51.6



3.3. Cross camera adaptation

In this part, we study the adaptation between different camera set-
tings. KITTI [7] dataset serves as source domain, and it contains
7,481 training images. Cityscapes [5] dataset is utilized as target
domain, and its validation set is used for evaluation.

The shape and resolution of the images, as well as the weather,
light, and other information in KITTI are markedly different from
Cityscapes. The results of various methods on the common cate-
gory car of the two datasets are presented in Table 2. The proposed
method achieved the highest accuracy of 45.9%.

Table 2. Experimental results (%) of KITTI→ Cityscapes
Methods car AP

Source-only [17] 37.6
DA [4] 41.8

SW-DA [19] 43.2
SC-DA[24] 43.6
P-DA[11] 43.9

HDCN(ours) 45.9

3.4. Ablation analysis

Table 3 presents the ablation experiments on the task SIM 10k →
Cityscapes. Here we used the GPA detector with ResNet50 as our
experimental baseline, which employed the instance-level domain
aligning method. The detection AP rises with the gradual addition
of each domain alignment subnet (i.e., Ins, Img, and Pix in Table 3).
Then, the AP improves by 1.1% after adding the consistency regular-
ization loss. It is evident that the consistency loss tackles the train-
ing disorder caused by multi-level aligning method. Finally, thanks
to adding the FAM module at pixel-level alignment, the detection
result in target domain is significantly improved by 1.7%.

Table 3. Ablation study of the proposed HDCN. Note: Ins represents
instance-level domain aligning, Img represents image-level domain
alignment, Pix represents pixel-level domain aligning, Con repre-
sents consistency regularization loss, and FAM represents whether
using pixel-based foreground attention module.

Methods Ins Img Pix Con FAM car AP
GPA X 47.6
ours X 45.5

X X 46.4
X X X 48.8
X X X X 49.9
X X X X X 51.6

To analyze the influence of γ, we evaluated our method with γ
change on the task KITTI → Cityscapes. As shown in Fig.3, the
model achieves the highest accuracy 45.9% when γ is 5.

3.5. Visualization

Fig.4 displays typical detection results on the task SIM 10k →
Cityscapes, where green boxes represent correct positives while red
boxes represent false positives. Obviously, GPA detects more wrong
instances than ours. Furthermore, the localization of our model is
more precise even when severe occlusion occurs.

Moreover, in Fig.5, we use t-SNE[16] to visualize the feature
distributions of source and target domain on the task SIM 10k →

Fig. 3. Ablation study on the parameter γ.

(a) Results of GPA

(b) Results of HDCN

Fig. 4. Detection results by different methods. (a) GPA, (b) HDCN

Cityscapes, in which GPA and our method are employed for feature
extraction. Due to domain-invariant feature learning, our method
better confuses the feature distributions of different domains.

4. CONCLUSION

This paper proposes a hierarchical domain-consistent network for
domain adaptation object detection, with three-level feature align-
ment subnets and a domain-consistent optimization machenism.
Comprehensive experiments demonstrate the efficiency of the hier-
archical adaptation method. Furthermore, pixel-based foreground
attention and domain-consistent optimization have been proved ben-
eficial for multi-level domain alignment in this study. In the future,
a more effective and efficient multi-head self-attention method will
be introduced into the method for better performance. To reduce
the large computation we will consider to verify our method with
lightweight detecting methods, for a better speed-accuracy trade-off.

(a) Features obtained by GPA (b) Features obtained by HDCN

Fig. 5. The comparison of different representations in 2D space by
t-SNE feature visualization. (a) GPA, (b) our HDCN
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