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Abstract. In real-world applications, factors such as illumination,
occlusion, and poor image quality, etc. make robust head pose estima-
tion much more challenging. In this paper, a novel deep transfer feature
based on convolutional neural forest method (D-CNF) is proposed for
head pose estimation. Deep transfer features are extracted from facial
patches by a transfer network model, firstly. Then, a D-CNF is devised
to integrate random trees with the representation learning from deep con-
volutional neural networks for robust head pose estimation. In the learn-
ing process, we introduce a neurally connected split function (NCSF)
as the node splitting strategy in a convolutional neural tree. Experi-
ments were conducted using public Pointing’04, BU3D-HP and CCNU-
HP facial datasets. Compared to the state-of-the-art methods, the pro-
posed method achieved much improved performance and great robust-
ness with an average accuracy of 98.99% on BU3D-HP dataset, 95.7%
on Pointing’04 and 82.46% on CCNU-HP dataset. In addition, in con-
trast to deep neural networks which require large-scale training data,
our method performs well even when there are only a small amount of
training data.
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1 Introduction

Head pose estimation is the key step in many computer vision applications,
such as human computer interaction, intelligent robotics, face recognition, and
recognition of visual focus of attention [14,28]. The existing techniques achieve
satisfactory results in well-designed environments. In real-world applications,
however, factors, such as illumination variation, occlusion, poor image quality,
etc., make head pose estimation much more challenging [19,22]. Hence, we pro-
pose a deep transfer feature based convolutional neural forest (D-CNF) method
to estimate head pose estimation in unconstrained environment.
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A general head pose estimation framework appeared in most of previous
works can be divided into two major steps, one is the feature extraction and
the other is classifier construction [13]. Extracting robust facial features and
designing effective classifier are the two key factors in unconstrained head pose
estimation. For feature extraction, based on different features, several methods
for the problem can be briefly divided into two categories, facial local feature and
facial global feature based methods. The former methods usually require high
image resolution for facial local feature identification, such as eyes, eyebrows,
nose or lips [13,27], etc. These methods can provide accurate recognition results
relying on accurate detection of facial feature points and high quality images. The
latter methods based on facial global feature usually use texture features from
an entire face to estimate head poses [1,4,17], etc. It may be good for dealing
with low resolution image but not robust to occlusion and illumination. In the
real-life scene, the various illumination occlusion, low image resolution and wide
scene make facial local feature extraction difficult. In order to extract robust
high-level features for head pose estimation, we address the problem based on
globe deep transfer feature representation.

For the head pose classifier construction, most of the traditional classifiers,
such as Support vector machine (SVM), Random forest (RF), Bays classifier and
convolutional neural network (CNN), together with some unsupervised learning
techniques are employed in the head pose estimation [17,21,25]. Recent years,
CNN and RF become popular learning algorithms for head pose estimation in
some real-life applications. CNN has an ability to automatically learn high-level
feature representations from raw image data [11,16,20,24,30]. CNN achieves
huge success in face recognition [23] and object multi-classification [26]. However,
a limit for CNN is that the learning procedure needs a large amount of datasets
and GPUs [6,9,15]. RF is a popular method given their capability to handle
large training datasets, high generalization power and speed, and easy imple-
mentation [2,3,5,7]. In this paper, we are interested in constructing an effective
head pose classifier using a limited amount of image data with a hybrid deep
convolution networks enhanced decision forest. Our method aims at improving
both accuracy and efficiency. The pipeline of our proposed D-CNF is depicted in
Fig. 1. The deep transfer feature is extracted by transfer CNN model to suppress
the influence of illumination, occlusion, and low image resolution, firstly. Then,
head poses are estimated by the trained D-CNF model.

Fig. 1. The pipeline of D-CNF for head pose estimation
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Our contributions include the following:

1. We propose a deep transfer feature based convolutional neural forest method
(D-CNF) for head pose estimation in unconstrained environment, which uni-
fies classification trees with the representation learning from deep convolution
networks, by training them in an end-to-end way.

2. We introduce a neurally connected split function (NCSF) as new split node
learning in a D-CNF tree. The D-CNF method can achieve fast and accurate
recognized results in the limited amount of image data, rather than a large
amount of data by CNN.

3. We propose a robust deep transfer feature representation based on a pre-
trained CNN model.

The rest of this paper is organized as follows: Sect. 2 presents our D-CNF
method in details. Section 3 discusses the experimental results using publicly
available datasets. Section 4 concludes this paper with a summary of our method.

2 Deep Transfer Feature Based Convolution Neural
Forests for Head Pose Estimation

In this section, we address the D-CNF approach for head pose estimation in
unconstrained environment. First, we present robust deep feature representation
based on facial patches, which can reduce the influence of various noises, such
as over-fitting, illumination, low image resolution, etc. Then, we describe the
framework of D-CNF training procedure for head pose estimation in details.
Finally, we give the D-CNF prediction for head pose estimation in unconstrained
environment.

2.1 Deep Transfer Feature Representation

We extract deep transfer feature from facial patches with a pre-trained CNN
model, i.e., Vgg-face [23]. We employ the Vgg-face architecture that is pre-
trained with the LFW and YTF face datasets [23] to derive deep high-level
feature representation, as shown in Fig. 2. The model includes 13 convolution
layers, 5 max-pooling layers, and 3 fully connected layers. The deep transfer
feature is described as:

yj = max(0,
∑

i

xiwi,j + bj), (1)

where yj is the jth output feature value of the first fully connected layer, xi

is the ith feature map of the last convolution layer, wi,j indicates the weight
between the ith feature map and the jth output feature value, and bj donates
the bias of the jth output feature value. The deep transfer feature is used to train
a two-layer network through back propagation, which can transfer the original
Vgg-face feature to the pose feature.
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Fig. 2. The structure of pre-trained CNN network for deep feature representation. The
trained network model includes 13 convolution layers, 5 max-pooling layers, and 3 full
connection layers. In our work, we extract deep features from facial patches on the first
connection layer.

2.2 D-CNF Training

In this paper, we propose a fast and efficient D-CNF method for robust head
pose estimation on limit training sets, which is unifies classification trees with
the representation learning from deep convolution networks, by training them
in end-to-end way. The training of a traditional decision tree of a random forest
(RF) consists in a recursive procedure, which starts from the root and iteratively
builds the tree by splitting nodes [2]. The proposed D-CNF is also an ensemble of
convolution neural trees, where split nodes are computed by the proposed neural
connected split function (NCSF). The proposed NCSF can improve the learn-
ing capability of splitting node by deep neural learning representation, thus to
improve the discrimination and efficiency of a tree. The detail training procedure
is given as below.

Learning Splitting Nodes by NCSF. For facial patches, we extract a set
of deep transfer features P , P = {Pi} and Pi = {yj}. We propose a NCSF-fn

to reinforce the learning capability of a splitting node by deep neural learning
representation. Each output of fn is brought in correspondence with a splitting
node dn(Pi;Y ),

dn(P ;Y ) = σ(fn(P ;Y )), (2)

where σ(x) = (1 + e−x)−1 is the sigmoid function and Y is the decision node
parametrization.

We employ a Stochastic Gradient Descent (SGD) approach to minimize the
risk with respect to Y :

Y (t+1) = Y (t) − η
|B|

∑
(P,π)∈B

∂L
∂Y (Y (t), π;P ), (3)

where η > 0 is the learning rate, π is facial expression label and B is a random
subset (a.k.a. mini-batch) of samples. The gradient with respect to Y is obtained
by chain rule as follows:

∂L(Y, π;P )
∂Y

=
∑

n∈N

∂L(Y, π;P )
∂fn(P ;Y )

· ∂fn(P ;Y )
∂Y

. (4)
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Hence, the gradient term that depends on the neutral decision tree is

∂L(Y, π;P )
∂fn(P ;Y )

= −(dNr
n (P ;Y ) + dNl

n (P ;Y )), (5)

where given a node N in a tree and Nr and Nl denote its right and left child,
respectively.

To split a node, Information Gain (IG) is maximized:

ϕ̃ = arg max
ϕ

(H(dn) −
∑

S∈{Nr,Nl}

∣∣dS
n

∣∣
|dn| (H(dn))), (6)

where |dS
n|

|dn| , s ∈ {Nr, Nl} is the ratio between the number of samples in dNl
n (arriv-

ing at the left child node), set dNr
n (arriving at the right child node), and H(dn)

is the entropy of dn.

Learning Leaf Nodes. Create a leaf l when IG is below a predefined threshold
or when a maximum depth is reached. Otherwise continue recursively for the two
child nodes dNl

n and dNr
n at the splitting node step. For a leaf node in a conditional

D-CNF tree, it stores the conditional multi-probability p(π|θ, y). Therefore, we
simplify the distribution over head poses by a multivariate Gaussian Mixture
Model (GMM) [17] as in:

p(θ, l) = N(θ; θ,Σθ
l ), (7)

where θ and Σθ
l are the mean and covariance of leaves’ head pose probabilities,

respectively.

2.3 D-CNF for Head Pose Estimation

This section provides the prediction procedure of the D-CNF for head pose
estimation. Deep transfer feature patches pass through the trees in a trained
D-CNF. All feature patches end in a set of leaves of the forest. In the leaves of
a D-CNF forest, there are muti-probabilistic models of head poses. We simplify
the distributions over multi-probabilities by adopting multivariate GMM as:

p(θ|l) = N(θ; θ,Σθ
l ), (8)

where θ and Σθ
l are the mean and covariance of leaves’ head pose probabilities,

respectively.
While Eq. 8 models the probability for a feature patch pi ending in the leaf

l of a single tree, the probability of the forest is obtained by averaging over all
trees:

p(θ|P ) =
1
T

∑

t

p(θ|lt(P )) (9)

where lt is the corresponding leaf for the tree Tt, T is the number of trees in
D-CNF.
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3 Experimental Results

3.1 Datasets and Settings

To evaluate our approach, three challenging face datasets were used: Pointing’04
dataset [10], BU3D-HP dataset [31], and CCNU-HP dataset in the wide class-
room [17]. These datasets were chosen since they contained unconstrained face
images with poses ranging from −90◦ to +90◦. The Pointing’04 head pose dataset
is a benchmark of 2790 monocular face images of 15 people with variations of
yaw and pitch angles from −90◦ to +90◦. For every person, 2 series of 93 images
(93 different poses) are available. The CCNU dataset was collected included an
annotated set of 38 people with 75 different head poses from an overhead camera
in the wide scene. It contains head poses spanning from −90◦ to 90◦ in horizon-
tal direction, and −45◦ to 90◦ in vertical direction. The multi-view BU3D-HP
database contains 100 people of different ethnicities, including 56 females and
44 males with variations of yaw angles from −90◦ to +90◦.

Fig. 3. The examples of head pose estimation on Pointing’04, BU3D-HP and CCNU-
HP datasets. Top row: results of Pointing’04. Middle row: results of the BU3D-HP
dataset. Bottom row: results of CCNU-HP dataset.

The examples of head pose estimation on Pointing’04, BU3D-HP and CCNU-
HP datasets are shown in Fig. 3. The D-CNF method can achieve fast and accu-
rate recognized results in limited amount of image data, rather than a large
amount of data by CNN. Our method was trained with 2000 images from Point-
ing’04 dataset, 15498 images from BU3D-HP dataset and 2121 images from
CCNU-HP dataset. In evaluation, we used 870 images from Pointing’04 dataset,
5166 images from BU3D-HP dataset and 707 images from CCNU-HP dataset.
The experiments were conducted in a PC with Intel(R) Core(TM) i7-6700 CPU@
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4.00 GHz, RAM 32 GB, NVIDIA GeForce GTX 1080 (2). We use the Caffe frame-
work [12] for the transfer CNN and deep feature representation.

3.2 Experiments on Pointing’04 Datasets

Figure 4 shows the head poses estimation results on Pointing’04 datasets in yaw
and pitch rotations, respectively. The average accuracy on 9 yaw head poses and
9 pitch head poses is 95.6%. As it is shown, the highest accuracy is 98.4% of 90◦

in the yaw rotation. The lowest accuracy is 92.6% of −45◦ in the pitch rotation,
due to more occlusion in a face area.

Fig. 4. Head pose estimation on Pointing’04 datasets in the yaw and pitch rotations

In comparison with the state-of-the-art head pose estimation methods, we
conducted experiments using the MSHF [18], Multivariates label distribution
(MLD-wj) [29], CNN(6convs+2fc) [15], multi-class SVM (M-SVM) [22] and
HF [8] on Pointing’04 head pose dataset. The same training and testing datasets
were used, and we employed a 4-fold cross-validation. Table 1 lists the average
accuracy and error across using these methods. MLD-wj [29], CNN [15] and HF
[8] yielded comparable results with an accuracy of approximately 70% in yaw
and pitch rotations. MLD-wj [29] proposed to associate a multivariate label dis-
tribution to each image for head pose estimation in yaw and pitch rotations.
MSHF [18] proposed a hybrid structure hough forest to 25 class head pose esti-
mation and achieved the second highest accuracy of 84%. HF [8] improved ran-
dom forests with Hough voting for real-time head pose estimation. M-SVM [22]
produced similar accuracy in the range of 60%. Our proposed D-CNF exhibited
the best performance with the accuracy of 95.7% in yaw and pitch rotations.
In addition, the standard deviation of D-CNF indicates that D-CNF achieved
the greatest consistency with a smallest STD. It is evidential that our D-CNF
improved the head pose estimation with great robustness.
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Table 1. Accuracy (%) and average error (in degrees) using different methods on
Pointing’04 dataset.

Methods Yaw Pitch Yaw + Pitch STD

MSHF [18] 92.3 90.7 84.0 3.5

MLD-wj [29] 84.30 86.24 72.3 4.9

CNN [15] 83.52 86.94 71.83 5.5

HF [8] 82.3 84.86 70.54 5.2

SVM [22] 80.6 82.5 60.46 5.7

D-CNF 99.05 94.36 95.7 0.8

3.3 Experiments on Multi-view BU3D-HP Dataset

Each image in the BU3D-HP dataset is automatically annotated with one out
of the nine head pose labels ({−90◦, −60◦, −45◦, −30◦, 0◦, +30◦, +60◦, +75◦,
90◦}). We train a D-CNF of 50 neural trees using 15498 head pose images.
Figure 5 shows the confusion matrix of head pose estimation on BU3D-HP
dataset. The D-CNF estimated 9 head pose classes in the horizontal direction
and achieved the average accuracy of 98.99%. Examples of the estimated head
pose are shown in Fig. 3.

Fig. 5. Confusion matrix of head pose estimation on BU3D-HP dataset.

The average accuracy of our D-CNF method is compared with that of CNN,
Zheng GSRRR [33], and SIFT + CNN [32] in Table 2. The CNN in this experi-
ment contains three convolution layers followed by three max-pooling layers and
two fully connected layers. Each filter is of size 5×5 and there are 32, 64, and 128
such filters in the first three layers, respectively. The input images are rescaled
to 224 by 224.

The accuracy of the CNN on BU3D-HP dataset is 69.61% as presented in
Table 2. The accuracies achieved with SIFT using algorithms proposed in [32,
33] are 87.36% and 92.26%, respectively. Our method achieves 98.99% which is
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Table 2. Accuracy (%) and STD using different methods on multi-view BU3D-HP
dataset.

Methods Features Poses Accuracy STD.

CNN Image 9 69.61 0.9

Zheng GSRRR [33] Sparse SIFT 9 87.36 0.8

SIFT + CNN [32] SIFT 9 92.26 0.7

D-CNF Deep transfer feature 9 98.99 0.5

competitive to the methods above. The lowest STD. of 0.5% using our method
also proved the robustness of the proposed D-CNF.

3.4 Experiments on CCNU-HP Dataset in the Wide Scene

In this case, we evaluated the proposed D-CNF on CCNU-HP dataset in the
wide scene. For evaluation, a 4-fold cross-validation was conducted. In our exper-
iments, we annotate the dataset into 5 classes in the yaw rotation as Fig. 6(a)
and 4 classes in the pitch rotation as Fig. 6(b). The final classified classes are 20
categories in the wide scene dataset.

Fig. 6. The annotation categories of the yaw and pitch angels in the experiments. (a)
The annotation classes in the yaw rotation, (b) The annotation classes in the yaw
rotation.

Figure 7 shows the confusion matrixs of head pose estimation on CCNU-
HP dataset in the yaw and pitch rotations, respectively. The D-CNF achieved
the average accuracy of 88.54% in the yaw rotation and 76.38% in the more
challenging pitch rotation. Examples of the estimated head pose are shown in
Fig. 3.

Table 3 lists the average accuracy and error across on more challenging
CCNU-HP datasets using four state-of-the-art methods. The average accuracy
of the CNN on CCNU-HP dataset is 59.52% as presented in Table 3. The second
highest accuracy is achieved 77.9% with combined features using D-RF method.
Our method achieves 82.46% which is competitive to the methods above.
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Fig. 7. Confusion matrixs of head pose estimation on CCNU-HP dataset. (a) The
matrix of yaw angles, (b) The matrix of pitch angles.

Table 3. Accuracy (%) using different methods on CCNU-HP dataset.

Methods Features Yaw Pitch Yaw + Pitch

CNN Image 65.25 53.79 59.52

Gabor + RF Gabor 75.42 67.57 71.5

D-RF [17] Combined features 85.6 70.19 77.90

D-CNF Deep transfer feature 88.54 76.38 82.46

4 Conclusion

This paper described a novel deep transfer feature based convolutional neural
enhanced forests (D-CNF) method for head pose estimation in unconstrained
environment. In this method, robust deep transfer features are extracted from
facial patches using transfer CNN model, firstly. Then, the D-CNF integrates
random trees with the representation learning from deep convolutional neural
networks for head pose estimation. Besides, a neural connected split function
(NCSF) is introduced to D-CNF to split node learning. Finally, a prediction
procedure of the trained D-CNF can classify head pose in unconstrained envi-
ronment. Our method can perform well in limit number of datasets owing to
transferring pre-trained CNN to fast decision node splitting in a Random For-
est. The experiments demonstrate that our method has remarkable robustness
and efficiency.

Experiments were conducted using public Pointing’04, BU3D-HP and
CCNU-HP datasets. Our results demonstrated that the proposed deep feature
outperformed the other popular image features. Compared to the state-of-the-
art methods, the proposed D-CNF achieved improved performance and great
robustness with an average accuracy of 98.99% on BU3D-HP dataset, 95.7% on
Pointing’04 dataset, and 82.46% on CCNU-HP dataset. The average time for
performing a head pose estimation is about 113 ms.

Compared to CNN method from popular deep learning, our method achieved
the greatest performance on limited number of datasets. In future, we plan to
investigate on-line learning methods to achieve real-time estimation by integrat-
ing head movement tracking.
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